Type I Interferons encompasses a large family of closely related cytokines comprising of at least 13 IFN- isotypes and single IFN-. Both IFN- and IFN- exert their activity through a common receptor IFNAR. Type I Interferons have broad regulatory effects and various subtypes of dendritic cells are influenced by this cytokines. In our study we asked question whether the low, constitutive levels of type I Interferons produced under steady state conditions are important for proper function of splenic conventional dendritic cells.
Absence of IFN-beta impairs antigen presentation capacity of splenic dendritic cells via down-regulation of heat shock protein 70.
Sex, Age, Specimen part
View SamplesBiallelic defects of the gene encoding for the intracellular enzyme 3’ repair exonuclease (Trex)1 cause Aicardi-Goutières syndrome (AGS), a rare monogenic, lupus-like autoimmune disease, while heterozygous Trex1 loss of function alleles are associated with systemic lupus erythematosus (SLE). Trex1-/- mice develop lethal autoimmune multi-organ inflammation, which results from a chronic type I IFN response triggered by intracellular accumulation of a putative nucleic acid substrate of Trex1. This pathogenic nucleic acid is detected by the broadly, but not ubiquitously, expressed cytosolic DNA sensor cGAS, raising the question whether there are specific cell types that respond to Trex1 deficiency by production of IFN and induce autoimmunity. We generated mice with conditional knock out of the Trex1 gene and demonstrated that loss of Trex1 throughout the hematopoietic system and even selective loss in dendritic cells is sufficient to cause IFN release and autoimmunity. B cells showed no transcriptional response to Trex1 deficiency. Trex1-/- keratinocytes produced IFN but did not induce skin inflammation, whereas loss of Trex1 in cardiomyocytes triggered neither IFN response nor pathology. Trex1-deficient neurons and astrocytes did not release IFN in the CNS. In contrast, mice with selective inactivation of Trex1 in long-living CNS macrophages such as microglia locally produced IFN but did not reproduce the mild encephalitis seen in Trex1-/- mice. Collectively, individual cell types differentially respond to the loss of Trex1 and dendritic cells seem promising candidates for experiments addressing the molecular pathomechanism in Trex1 deficiency. Overall design: We sorted CD19-positive B cells from spleens of Trex1fl/fl CD19-Cre+ and Trex1fl/fl CD19-Cre- mice and isolated total RNA for library construction to perform mRNA deep sequencing.
Loss of Trex1 in Dendritic Cells Is Sufficient To Trigger Systemic Autoimmunity.
Specimen part, Subject
View SamplesTo elucidate responses of myeloid cells to SAMHD1 deficiency in the absence of exogenous viral infection, we performed global gene expression analysis of SAMHD1 deficient macrophages. Overall design: Peritoneal macrophages from 10 mutants and 10 controls were FACS sorted. Isolated RNA was subjected to next generation mRNA sequencing.
Mouse SAMHD1 has antiretroviral activity and suppresses a spontaneous cell-intrinsic antiviral response.
Sex, Age, Specimen part, Cell line
View SamplesTo investigate the contribution of type-1 IFN signalling to the upregulation of IFN- stimulated genes in SAMHD1-deficient cells, we performed global gene expression analysis of SAMHD1-deficient IFNAR-/- macrophages. Overall design: Peritoneal macrophages from ten SAMHD1-deficient IFNAR-/- and six SAMHD1-deficient controls were FACS sorted. RNA was subjected to next generation mRNA sequencing.
Mouse SAMHD1 has antiretroviral activity and suppresses a spontaneous cell-intrinsic antiviral response.
Sex, Age, Specimen part, Cell line, Subject
View SamplesTo elucidate responses of myeloid cells to SAMHD1 deficiency in the absence of exogenous viral infection, we performed global gene expression analysis of SAMHD1 deficient macrophages. Overall design: Peritoneal macrophages from nine mutants and nine controls were FACS sorted. Cells from three animals were pooled to yield three poolls per group. RNA from these pools was subjected to next generation mRNA sequencing
Mouse SAMHD1 has antiretroviral activity and suppresses a spontaneous cell-intrinsic antiviral response.
Sex, Age, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Brain Endothelial- and Epithelial-Specific Interferon Receptor Chain 1 Drives Virus-Induced Sickness Behavior and Cognitive Impairment.
Sex, Specimen part, Treatment, Time
View SamplesVSV-M2 is recognized by cytosolic RIG-I. Notably, 5'-triphosphate RNA molecules derived from either viral RNA or from the synthetically produced 3pRNA can also induce RIG-I activation. MDA5 stimulation is achieved using complexed poly(I:C), a synthetic analog of viral dsRNA.
Brain Endothelial- and Epithelial-Specific Interferon Receptor Chain 1 Drives Virus-Induced Sickness Behavior and Cognitive Impairment.
Sex, Specimen part, Treatment, Time
View SamplesBrain endothelial cells are an essential part of the blood-brain-barrier (BBB) and, as such, are exposed to proinflammatory mediators as well as danger signals during infections. They might function as decisive cells mediating RNA virus- and IFN-mediated sickness behavior.
Brain Endothelial- and Epithelial-Specific Interferon Receptor Chain 1 Drives Virus-Induced Sickness Behavior and Cognitive Impairment.
Specimen part, Treatment, Time
View SamplesAs RIG-I activation induces potent IFN-I responses,we analyzed the role of IFN-I in intestinal tissue protection and prevention of GVHD. We performed RNA sequencing with tissue samples from SI of WT mice that received TBI -/+ previous 3pRNA treatment and -/+ antibody-mediated blockade of IFNAR. Application of 3pRNA before TBI resulted in a significant increase of IFN-inducible genes in the SI as compared to solely irradiated mice. Blockade of IFNAR signaling abrogated 3pRNA-mediated up-regulation of IFN-induced genes, demonstrating that RIG-I-induced gene-regulation depends on IFN-I. Overall design: Balb/c mice were solely irradiated (9Gy) (n=3), pretreated with Rig-I agonist 3pRNA prior (d-1) to irradiation (n=3) or pre-treated with 3pRNA (d-1) + anti-IFNaR1 blocking antibody (d-2) prior to irradiation (n=3). RNA from small intestines was isolated 12h after irradiation and used for RNA sequencing.
RIG-I/MAVS and STING signaling promote gut integrity during irradiation- and immune-mediated tissue injury.
Cell line, Subject
View SamplesTo gain insights into the interplay between DNA methylation and gene regulation we generated a basepair resolution reference map of the mouse methylome in stem cells and neurons. High genome coverage allowed for a novel quantitative analysis of local methylation states, which identified Low Methylated Regions (LMR) with an average methylation of 30%. These regions are evolutionary conserved, reside outside of CpG islands and distal to promoters. They represent regulatory regions evidenced by their DNaseI hypersensitivity and chromatin marks of enhancer elements. LMRs are occupied by transcription factors (TF) and their reduced methylation requires TF binding while introduction of TF binding sites creates LMRs de novo. This dependency on TF activity is further evident when comparing the methylomes of embryonic stem cells and derived neuronal cells. LMRs present in both cell types are occupied by broadly expressed factors, while LMRs present at only one state are occupied by cell-type specific TFs. Methylome data can thus enhance the prediction of occupied TF binding sites and identification of active regulatory regions genome-wide. Our study provides reference methylomes for the mouse at two cell states, identifies a novel and highly dynamic feature of the epigenome that defines distal regulatory elements and shows that transcription factor binding dynamically shapes mammalian methylomes. Overall design: Strand specific expression profiling by high throughput sequencing.
DNA-binding factors shape the mouse methylome at distal regulatory regions.
Specimen part, Cell line, Subject
View Samples