UBF is an essential RNA Polymerase I (Pol I)-transcription factor. Our research investigates extra roles for UBF in regulation of Pol II gene expression. Our gene expression data identifies genes that are differentially regulated following UBF knockdown by siRNA.
A novel role for the Pol I transcription factor UBTF in maintaining genome stability through the regulation of highly transcribed Pol II genes.
Specimen part, Cell line
View SamplesExpression data from NIH-3T3 cells left uninfected or infected with MCMV for 2, 4 or 6h on total RNA as well as newly transcribed RNA labeled for 1-2, 3-4, and 5-6hpi. For newly transcribed RNA, the isolated RNA was labeled for 1h and separated from total cellular RNA following Trizol RNA preparation and thiol-specific biotinylation. We used microarrays to analyze the effects of MCMV infection in total and newly transcribed RNA.
Real-time transcriptional profiling of cellular and viral gene expression during lytic cytomegalovirus infection.
Disease, Cell line, Time
View SamplesCells producing adrenalin are largely derived from nerve-associated Schwann cell precursors via an intermediate progenitor “bridge” cell. We demonstrate that large numbers of chromaffin cells arise from peripheral glial stem cells, termed Schwann cell precursors (SCPs) Overall design: SCPs migrate along the visceral motor nerve to the vicinity of the forming adrenal gland where they detach from the nerve and form post-synaptic neuroendocrine chromaffin cells. An intricate molecular logic drives two sequential phases of gene expression, one unique for a distinct transient cellular state and another for cell-type specification. Subsequently, these programs downregulate SCP- and upregulate chromaffin-cell-gene networks. The adrenal medulla forms through limited cell expansion and requires the recruitment of numerous SCPs. Thus, peripheral nerves serve as a stem cell niche for neuroendocrine system development.
RNA velocity of single cells.
Specimen part, Subject
View SamplesHek293 cells were metabolically labelled using 4-thiouracil as described in (Schwalb et al, Science. 2016 Jun 3;352(6290):1225-8) but without fragmentation, and then bulk RNA was prepared for sequencing using the STRT method (Islam et al, Genome Res. 2011 Jul;21(7):1160-7). Samples were incubated in duplicate for 5, 15 and 30 minutes and included an unlabeled control representing the steady-state expression state. Overall design: 2 samples each of 4 incubation times, 2 cDNA preparations, 2 tagmentation replicates, and 2 biological replicates
RNA velocity of single cells.
Cell line, Subject
View SamplesCholecystokinin (CCK) is a satiety hormone produced by discrete enteroendocrine cells scattered among absorptive cells of the small intestine. CCK is released into blood following a meal; however, the mechanisms inducing hormone secretion are largely unknown. Ingested fat is the major stimulant of CCK secretion. We recently identified a novel member of the lipoprotein remnant receptor family known as immunoglobulin-like domain containing receptor 1 (ILDR1) in intestinal CCK cells and postulated that this receptor conveyed the signal for fat-stimulated CCK secretion. In the intestine, ILDR1 is expressed exclusively in CCK cells. Orogastric administration of fatty acids elevated blood levels of CCK in wild type but not ILDR1-deficient mice, although the CCK secretory response to trypsin inhibitor was retained. The uptake of fluorescently labeled lipoproteins in ILDR1-transfected CHO cells and release of CCK from isolated intestinal cells required a unique combination of fatty acid plus HDL. CCK secretion secondary to ILDR1 activation is associated with increased [Ca2+]i consistent with regulated hormone release. These findings demonstrate that ILDR1 regulates CCK release through a mechanism dependent on fatty acids and lipoproteins and that absorbed fatty acids regulate gastrointestinal hormone secretion.
Immunoglobulin-like domain containing receptor 1 mediates fat-stimulated cholecystokinin secretion.
Specimen part
View SamplesChoroid plexuses (CP) develop early during development. They form a barrier between the blood and the cerebrospinal fluid, and fulfill important protective and nutritive functions. We used Affymetrix microarrays to assess whether CP of the lateral ventricles (LVCP) have similar functions in developing and adult brain. We identified distinct families of protective and transport genes and found that most of these genes were already well expressed during development.
Developmental changes in the transcriptome of the rat choroid plexus in relation to neuroprotection.
Specimen part
View SamplesGene expression profiling in rat lumbar spinal cord following ventral root avulsion in the two inbred rat strains.
Genetically determined susceptibility to neurodegeneration is associated with expression of inflammatory genes.
Sex, Specimen part, Time
View SamplesPI3K/AKT pathway plays one of pivotal roles in breast cancer development and maintenance. PIK3CA, coding PIK3 catalytic subunit, is the oncogene which shows the high frequency of gain-of-function mutations leading to the PI3K/AKT pathway activation in breast cancer. In particular in the ER-positive breast tumors PIK3CA mutations have been observed in 30% to 40%. However, genes expressed in connection to the pathway activation in breast tumorigenesis remain largely unknown.
Gene expression profiling reveals new aspects of PIK3CA mutation in ERalpha-positive breast cancer: major implication of the Wnt signaling pathway.
Sex, Age, Specimen part
View SamplesWe were interested to explain why p53 binds some high affinity sites in contrast to other high affinity sites that are not bound by p53.
p53 binds preferentially to genomic regions with high DNA-encoded nucleosome occupancy.
Cell line, Treatment
View SamplesLevels of C/EBP are low in myeloid blast crisis (BC) of chronic myelogenous leukemia (CML) and its expression in p210BCR/ABL-expressing hematopoietic cells induces granulocytic differentiation, inhibits proliferation and suppresses leukemogenesis. To assess the mechanisms involved in these effects, C/EBP targets were identified by microarray analyses. Upon C/EBP activation, expression of c-Myb and GATA-2 was repressed in 32D-BCR/ABL, K562 and CML-BC primary cells but only c-Myb levels decreased slightly in CD34+ normal progenitors. The role of these two genes for the biological effects of C/EBP was assessed by perturbing their expression in K562 cells. Expression of c-Myb blocked the proliferation inhibition and differentiation-inducing effects of C/EBP while c-Myb siRNA treatment enhanced C/EBP-mediated proliferation inhibition and induced changes in gene expression indicative of monocytic differentiation. GATA-2 expression suppressed the proliferation inhibitory effect of C/EBP but blocked in part the effect on differentiation; GATA-2 siRNA treatment had no effects on C/EBP induction of differentiation but inhibited proliferation of K562 cells, alone or upon C/EBP activation. In summary, the effects of C/EBP in p210BCR/ABL -expressing cells depend, in part, on transcriptional repression of c-Myb and GATA-2. Since perturbation of c-Myb and GATA-2 expression has non identical consequences for proliferation and differentiation of K562 cells, the effects of C/EBP appear to involve different transcription-regulated targets.
Transcriptional repression of c-Myb and GATA-2 is involved in the biologic effects of C/EBPalpha in p210BCR/ABL-expressing cells.
No sample metadata fields
View Samples