This SuperSeries is composed of the SubSeries listed below.
Function, targets, and evolution of Caenorhabditis elegans piRNAs.
Specimen part
View SamplesNeuroendocrine prostate cancer (NEPC) is rare historically but may be increasingin prevalence as patients potentially develop resistance to contemporary anti-androgen treatment through a neuroendocrine phenotype. Diagnosis can be straightforward when classic morphological features are accompanied by a prototypical immunohistochemistry profile, however there is increasing recognition of disease heterogeneity and hybrid phenotypes. In the primary setting, small cell prostatic carcinoma (SCPC) is frequently admixed with adenocarcinomas that may be clonally related, while a small fraction of SCPCs express markers typical of prostatic adenocarcinoma. Gene expression patterns may eventually help elucidate the biology underlying equivocal cases with discordant IHC, however studies to date have focused on prototypical cases and been based on few patients due to disease rarity.
Gene expression signatures of neuroendocrine prostate cancer and primary small cell prostatic carcinoma.
Subject
View SamplesInterleukin-1 receptor associated kinase 1 (IRAK1) is an important component of the IL-1R and TLR signaling pathways, which influence Th cell differentiation. Here, we show that IRAK1 promotes Th17 development by mediating IL-1 induced upregulation of IL-23R and subsequent STAT3 phosphorylation, thus enabling sustained IL-17 production. Moreover, we show that IRAK1 signaling fosters Th1 differentiation by mediating T-bet induction and counteracts Treg generation. Cotransfer experiments revealed that Irak1-deficient CD4+ T cells have a cell-intrinsic defect in generating Th1 and Th17 cells under inflammatory conditions in spleen, mesenteric lymph nodes and colon tissue. Furthermore, IRAK1 expression in T cells was shown to be essential for T cell accumulation in the inflamed intestine and mLNs. Transcriptome analysis ex vivo revealed that IRAK1 promotes T cell activation and induction of gut-homing molecules in a cell-intrinsic manner. Accordingly, Irak1-deficient T cells failed to upregulate surface expression of 47 integrin after transfer into Rag1-/- mice and their ability to induce colitis was greatly impaired. Lack of IRAK1 in recipient mice provided additional protection from colitis. Therefore, IRAK1 plays an important role in intestinal inflammation by mediating T cell activation, differentiation and their accumulation in the gut. Thus, IRAK1 is a promising novel target for therapy of inflammatory bowel diseases.
IRAK1 Drives Intestinal Inflammation by Promoting the Generation of Effector Th Cells with Optimal Gut-Homing Capacity.
No sample metadata fields
View SamplesBreast cancer cells facilitate distant metastasis through the induction of immunosuppressive regulatory B cells, designated tBregs. We report here that, to do this, breast cancer cells produce metabolites of the 5-lipoxygenase (5-LO) pathway such as leukotriene B4 (LTB4) to activate the proliferator-activated receptor alpha (PPARalpha) in B cells. Inactivation of LTB4 signaling or genetic deficiency of PPARalpha in B cells blocks the generation of tBregs and thereby abrogates lung metastasis in mice with established breast cancer. Thus, in addition to eliciting fatty acid oxidation and metabolic signals, PPARalpha initiates programs required for differentiation of tBregs. We propose that PPARalpha in B cells or/and tumor 5-LO pathways represents new targets for pharmacological control of tBreg-mediated cancer escape.
Cancer-produced metabolites of 5-lipoxygenase induce tumor-evoked regulatory B cells via peroxisome proliferator-activated receptor α.
Specimen part
View SamplesThis study provides the first comprehensive analysis of gene expression and transcriptome dynamics of bovine metaphase II oocytes and in vivo developing bovine embryos.
Genome-wide expression profiling reveals distinct clusters of transcriptional regulation during bovine preimplantation development in vivo.
No sample metadata fields
View SamplesGene expression analyis of two hESCs, two human neonatal fibroblasts, and four human iPSCs generated with retroviral transduction using the OSKM cocktail.
Human induced pluripotent stem cells harbor homoplasmic and heteroplasmic mitochondrial DNA mutations while maintaining human embryonic stem cell-like metabolic reprogramming.
Specimen part, Cell line
View SamplesMuscle contraction during exercise is the major stimulus for the release of peptides and proteins (myokines) that are supposed to take part in the benefical adaptation to exercise. We hypothesize that application of an in vitro exercise stimulus as electric pulse stimulation (EPS) to human myotubes enables the investigation of the human muscle secretome in a clearly defined model. We applied EPS for 24 h to primary human myotubes and studied the whole genome-wide transcriptional response and as well as the release of candidate myokines. We observed 183 differentially regulated transcripts with fold-changes > 1.3. The transcriptional response resembles several properties of the in vivo situation in the skeletal muscle after endurance exercise, namely significant enrichment of pathways associated with interleukin and chemokine signaling, lipid metabolism, and anti-oxidant defense; notably without increased release of creatin kinase.
Cytokine response of primary human myotubes in an in vitro exercise model.
Sex, Specimen part, Subject
View SamplesThe key lipid metabolism transcription factor sterol regulatory element-binding protein (SREBP)-1a integrates gene regulatory effects of hormones, cytokines, nutrition and metabolites as lipids, glucose or cholesterol via stimuli specific phosphorylation by different MAPK cascades. We have formerly reported the systemic impact of phosphorylation in transgenic mouse models with liver-specific overexpression of the N-terminal transcriptional active domain of SREBP-1a (alb-SREBP-1a) or a MAPK kinase phosphorylation sites deficient variant (alb-SREBP-1aP; (S63A, S117A, T426V)), respectively. Here we investigated the molecular basis of the systemic observation in holistic hepatic gene expression analyses and lipid degrading organelles involved in the pathogenesis of metabolic syndrome, i.e. peroxisomes, by 2D-DIGE and mass spectrometry analyses. Although alb-SREBP-1a mice develop a severe phenotype with visceral adipositas and hepatic lipid accumulation featuring a fatty liver, the hepatic differential gene expression and alterations in peroxisomal protein patterns compared to control mice were surprisingly relative low. In contrast, phosphorylation site deficient alb-SREBP-1aP mice, protected from hepatic lipid accumulation phenotype, showed gross alteration in hepatic gene expression and peroxisomal proteome. Further knowledge based analyzes revealed that overexpression of SREBP-1a favored mainly acceleration in lipid metabolism and indicated a regular insulin signaling, whereas disruption of SREBP-1a phosphorylation resulted in massive alteration of cellular processes including signs for loss of lipid metabolic targets. These results could be the link to a disturbed lipid metabolism that overall resembles a state of insulin resistance.
Inactivation of SREBP-1a Phosphorylation Prevents Fatty Liver Disease in Mice: Identification of Related Signaling Pathways by Gene Expression Profiles in Liver and Proteomes of Peroxisomes.
Sex, Age, Specimen part
View SamplesLong noncoding RNAs (lncRNAs) have been found to regulate the expression of mRNAs with which they share partial complementarity. We sought to identify the mechanism through which the lncRNA OIP5-AS1, which is abundant in the cytoplasm, suppressed cell proliferation. Silencing of OIP5-AS1 in human cervical carcinoma cells revealed the appearance of many aberrant (monopolar, multipolar, misaligned) mitotic spindles. By biotin-oligomer affinity pulldown, proteomic, and bioinformatic analyses, we identified a subset of human cell cycle regulatory proteins encoded by mRNAs that were capable of interacting with OIP5-AS1. Further investigation revealed that GAK mRNA, which encodes a cyclin G-associated kinase important for mitotic progression, was a prominent target of OIP5-AS1. The interaction between these two transcripts led to a reduction in GAK mRNA stability and GAK protein abundance, as determined in cells in which OIP5-AS1 levels were increased or decreased. Importantly, the aberrant mitotic cell division seen after silencing OIP5-AS1 was partly rescued if GAK was simultaneously silenced. These findings indicate that the abnormal mitoses seen after silencing OIP5-AS1 was caused by an untimely rise in GAK levels and suggest that OIP5-AS1 suppresses cell proliferation at least in part by reducing GAK levels
LncRNA OIP5-AS1/cyrano suppresses GAK expression to control mitosis.
Specimen part, Disease, Disease stage, Cell line, Treatment
View SamplesTo identify genes regulated by BRD4 and to provide insight into new mechanisms de-regulated by BRD4, such as the response to oxidative stress, we integrated BRD4-binding regions with BRD4 gene expression data. For this analysis we performed BRD4 chromatin immunoprecipitation experiments and BRD4 knock down experiments followed by RNA-Seq analyses. By integration of both gene lists we identified top candidate genes regulated by BRD4. Overall design: HEK cells have been investigated for genomewide BRD4 binding sites and expression changes after knock down of BRD4. Illumina sequencing was used to gather data of the type ChIP Seq and mRNA Seq.
The bromodomain protein BRD4 regulates the KEAP1/NRF2-dependent oxidative stress response.
No sample metadata fields
View Samples