Constitutive low level DNA damage is linked to innate immune activation. Hierarchical clustering of over 9000 transcripts revealed remarkably similar profiles in a patient with lupus erythematosus and a patient with AGS with up-regulation of genes involved in DNA damage signaling, p53-inducible genes, senescence-associated genes as well as up-regulation of interferon-stimulated genes. Transcriptional profiling of fibroblasts exposed to oxidative stress showed a marked up-regulation of genes involved in DNA replication/repair and replication licensing in TREX1-deficient cells compared to wild type cells suggesting massive replication stress. Overall design: Comparison of transcriptional profiles of unstressed patient fibroblasts with wild type cells as well as fibroblasts exposed to oxidative stress
RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Consensus molecular subtypes of colorectal cancer are recapitulated in in vitro and in vivo models.
Specimen part, Disease, Disease stage, Cell line, Subject
View SamplesColorectal cancer (CRC) is a highly heterogeneous disease both from a molecular and clinical perspective. Several distinct molecular entities, such as microsatellite instability (MSI), have been defined that make up biologically distinct subgroups with their own clinical course. Recent data indicated that CRC can be best segregated into four groups called Consensus Molecular Subtypes (CMS1-4), which each have a unique biology and gene expression pattern. In order to develop improved, subtype-specific therapies and to gain insight into the molecular wiring and origin of these subtypes, reliable models are needed. This study was designed to determine the heterogeneity and identify the presence of CMSs in a large panel of CRC cell lines, primary cultures and patient-derived xenografts (PDX). We provide a repository encompassing this heterogeneity and moreover describe that a large part of the models can be robustly assigned to one of the four CMSs, independent of the stromal contribution. We subsequently validate our CMS stratification by functional analysis which for instance shows mesenchymal enrichment in CMS4 and metabolic dysregulation in CMS3. Finally, we observe a clear difference in sensitivity to chemotherapy-induced apoptosis, specifically between CMS2 and CMS4. This relates to the in vivo efficacy of chemotherapy, which delays outgrowth of CMS2, but not CMS4 xenografts. This indicates that molecular subtypes are faithfully modelled in the CRC cell cultures and PDXs, representing tumour cell intrinsic and stable features. This repository provides researchers with a platform to study CRC using the existing heterogeneity.
Consensus molecular subtypes of colorectal cancer are recapitulated in in vitro and in vivo models.
Specimen part, Disease, Disease stage, Subject
View SamplesColorectal cancer (CRC) is a highly heterogeneous disease both from a molecular and clinical perspective. Several distinct molecular entities, such as microsatellite instability (MSI), have been defined that make up biologically distinct subgroups with their own clinical course. Recent data indicated that CRC can be best segregated into four groups called Consensus Molecular Subtypes (CMS1-4), which each have a unique biology and gene expression pattern. In order to develop improved, subtype-specific therapies and to gain insight into the molecular wiring and origin of these subtypes, reliable models are needed. This study was designed to determine the heterogeneity and identify the presence of CMSs in a large panel of CRC cell lines, primary cultures and patient-derived xenografts (PDX). We provide a repository encompassing this heterogeneity and moreover describe that a large part of the models can be robustly assigned to one of the four CMSs, independent of the stromal contribution. We subsequently validate our CMS stratification by functional analysis which for instance shows mesenchymal enrichment in CMS4 and metabolic dysregulation in CMS3. Finally, we observe a clear difference in sensitivity to chemotherapy-induced apoptosis, specifically between CMS2 and CMS4. This relates to the in vivo efficacy of chemotherapy, which delays outgrowth of CMS2, but not CMS4 xenografts. This indicates that molecular subtypes are faithfully modelled in the CRC cell cultures and PDXs, representing tumour cell intrinsic and stable features. This repository provides researchers with a platform to study CRC using the existing heterogeneity.
Consensus molecular subtypes of colorectal cancer are recapitulated in in vitro and in vivo models.
Specimen part, Disease, Disease stage, Subject
View SamplesColorectal cancer (CRC) is a highly heterogeneous disease both from a molecular and clinical perspective. Several distinct molecular entities, such as microsatellite instability (MSI), have been defined that make up biologically distinct subgroups with their own clinical course. Recent data indicated that CRC can be best segregated into four groups called Consensus Molecular Subtypes (CMS1-4), which each have a unique biology and gene expression pattern. In order to develop improved, subtype-specific therapies and to gain insight into the molecular wiring and origin of these subtypes, reliable models are needed. This study was designed to determine the heterogeneity and identify the presence of CMSs in a large panel of CRC cell lines, primary cultures and patient-derived xenografts (PDX). We provide a repository encompassing this heterogeneity and moreover describe that a large part of the models can be robustly assigned to one of the four CMSs, independent of the stromal contribution. We subsequently validate our CMS stratification by functional analysis which for instance shows mesenchymal enrichment in CMS4 and metabolic dysregulation in CMS3. Finally, we observe a clear difference in sensitivity to chemotherapy-induced apoptosis, specifically between CMS2 and CMS4. This relates to the in vivo efficacy of chemotherapy, which delays outgrowth of CMS2, but not CMS4 xenografts. This indicates that molecular subtypes are faithfully modelled in the CRC cell cultures and PDXs, representing tumour cell intrinsic and stable features. This repository provides researchers with a platform to study CRC using the existing heterogeneity.
Consensus molecular subtypes of colorectal cancer are recapitulated in in vitro and in vivo models.
Disease, Disease stage, Cell line
View SamplesColorectal cancer (CRC) is a highly heterogeneous disease both from a molecular and clinical perspective. Several distinct molecular entities, such as microsatellite instability (MSI), have been defined that make up biologically distinct subgroups with their own clinical course. Recent data indicated that CRC can be best segregated into four groups called Consensus Molecular Subtypes (CMS1-4), which each have a unique biology and gene expression pattern. In order to develop improved, subtype-specific therapies and to gain insight into the molecular wiring and origin of these subtypes, reliable models are needed. This study was designed to determine the heterogeneity and identify the presence of CMSs in a large panel of CRC cell lines, primary cultures and patient-derived xenografts (PDX). We provide a repository encompassing this heterogeneity and moreover describe that a large part of the models can be robustly assigned to one of the four CMSs, independent of the stromal contribution. We subsequently validate our CMS stratification by functional analysis which for instance shows mesenchymal enrichment in CMS4 and metabolic dysregulation in CMS3. Finally, we observe a clear difference in sensitivity to chemotherapy-induced apoptosis, specifically between CMS2 and CMS4. This relates to the in vivo efficacy of chemotherapy, which delays outgrowth of CMS2, but not CMS4 xenografts. This indicates that molecular subtypes are faithfully modelled in the CRC cell cultures and PDXs, representing tumour cell intrinsic and stable features. This repository provides researchers with a platform to study CRC using the existing heterogeneity.
Consensus molecular subtypes of colorectal cancer are recapitulated in in vitro and in vivo models.
Specimen part, Disease, Disease stage, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Systems biology of vaccination for seasonal influenza in humans.
Specimen part, Subject, Time
View SamplesSystems vaccinology has emerged as an interdisciplinary field that combines systems wide measurements and network and predictive modeling applied to vaccinology.
Systems biology of vaccination for seasonal influenza in humans.
Specimen part, Subject, Time
View SamplesSystems vaccinology has emerged as an interdisciplinary field that combines systems wide measurements and network and predictive modeling applied to vaccinology.
Systems biology of vaccination for seasonal influenza in humans.
Specimen part, Subject, Time
View SamplesSystems vaccinology has emerged as an interdisciplinary field that combines systems wide measurements and network and predictive modeling applied to vaccinology.
Systems biology of vaccination for seasonal influenza in humans.
Specimen part, Subject, Time
View Samples