This SuperSeries is composed of the SubSeries listed below.
Reprogramming capacity of Nanog is functionally conserved in vertebrates and resides in a unique homeodomain.
Specimen part
View SamplesNanog null neural stem (NS) cells were reprogrammed to naive pluripotency in 2i/LIF conditions with mouse (m) Nanog and human (h) Nanog. Global gene expression in resulting iPS cells was compared to embryonic stem (ES) cells and nanog null NS cells.
Reprogramming capacity of Nanog is functionally conserved in vertebrates and resides in a unique homeodomain.
Specimen part
View SamplesNanog null neural stem (NS) cells were reprogrammed to naive pluripotency in 2i/LIF conditions with chick (c) and zebrafish (z) Nanog orthologs. Global gene expression was compared to iPS cells derived with mouse (m) Nanog.
Reprogramming capacity of Nanog is functionally conserved in vertebrates and resides in a unique homeodomain.
Specimen part
View SamplesTo identify genes affected by mutant huntington protein, we performed mRNA-seq experiments with Striatal STHdh Q7/Q7, Q7Q111, and Q111/Q111 cells. We also tested the effect of Sp1 overexpression on rescuing gene expression in Q111/Q111 cells. Overall design: Striatal STHdh Q7/Q7, Q7/Q111 and Q111/Q111 cells were used for the mRNA-seq in replicates. After Sp1 transient overexpression in Q111/Q111 cells, cells were collected for mRNA-seq analysis.
Real-time imaging of Huntingtin aggregates diverting target search and gene transcription.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Hypothalamic food intake regulation in a cancer-cachectic mouse model.
Sex, Specimen part, Treatment
View SamplesAppetite is frequently affected in cancer patients, leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer cachectic mouse model with increased food intake. In this model, mice bearing C26 colon adenocarcinoma have an increased food intake subsequently to the loss of body weight. We hypothesize that in this model, appetite regulating systems in the hypothalamus, which apparently fail in anorexia, are still able to adapt adequately to changes in energy balance. Therefore studying the changes that occur on appetite regulators in the hypothalamus might reveal targets for treatment of cancer-induced eating disorders. By applying transcriptomics, many appetite regulating systems in the hypothalamus could be taken into account, providing an overview of changes that occur in the hypothalamus during tumour growth. We show that hypothalamic expression of orexigenic neuropeptides NPY and AgRP was higher, whereas expression of anorexigenic genes CCK and POMC were lower in TB compared to controls. In addition, serotonin and dopamine signalling pathways were found to be significantly altered in TB mice. Serotonin levels in brain showed to be lower in TB mice compared to control mice, while dopamine levels did not change. Moreover, serotonin levels inversely correlated with food intake. Transcriptomic analysis of the hypothalamus of cachectic TB mice with an increased food intake showed changes in NPY, AgRP and serotonin signalling. Serotonin levels in the brain showed to correlate with changes in food intake. Targeting these systems seems a promising strategy to avoid the development of cancer-induced eating disorders.
Hypothalamic food intake regulation in a cancer-cachectic mouse model.
Sex, Specimen part, Treatment
View SamplesAppetite is frequently affected in cancer patients, leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer cachectic mouse model with increased food intake. In this model, mice bearing C26 colon adenocarcinoma have an increased food intake subsequently to the loss of body weight. We hypothesize that in this model, appetite regulating systems in the hypothalamus, which apparently fail in anorexia, are still able to adapt adequately to changes in energy balance. Therefore studying the changes that occur on appetite regulators in the hypothalamus might reveal targets for treatment of cancer-induced eating disorders. By applying transcriptomics, many appetite regulating systems in the hypothalamus could be taken into account, providing an overview of changes that occur in the hypothalamus during tumour growth. We show that hypothalamic expression of orexigenic neuropeptides NPY and AgRP was higher, whereas expression of anorexigenic genes CCK and POMC were lower in TB compared to controls. In addition, serotonin and dopamine signalling pathways were found to be significantly altered in TB mice. Serotonin levels in brain showed to be lower in TB mice compared to control mice, while dopamine levels did not change. Moreover, serotonin levels inversely correlated with food intake. Transcriptomic analysis of the hypothalamus of cachectic TB mice with an increased food intake showed changes in NPY, AgRP and serotonin signalling. Serotonin levels in the brain showed to correlate with changes in food intake. Targeting these systems seems a promising strategy to avoid the development of cancer-induced eating disorders.
Hypothalamic food intake regulation in a cancer-cachectic mouse model.
Sex, Specimen part, Treatment
View SamplesThe hippocampus is part of a brain network essential for memory function. Paradoxically, the hippocampus is also the brain structure that is most sensitive to hypoxic-ischemic episodes. Here we show that the expression of genes associated with glycolysis and glutamate metabolism in astrocytes and the coverage of excitatory synapses by astrocytic processes undergo significant decreases in the CA1 field of the monkey hippocampus during postnatal development. Given the established role of astrocytes in the regulation of glutamate concentration in the synaptic cleft, our findings indicate that a developmental decrease in astrocytic processes underlies the selective vulnerability of CA1 during hypoxic-ischemic episodes in adulthood, its decreased susceptibility to febrile seizures with age, as well as contribute to the emergence of selective, adult-like memory function.
Developmental regulation of gene expression and astrocytic processes may explain selective hippocampal vulnerability.
Specimen part
View SamplesAortic valve regurgitation (AR) imposes a severe volume overload to the left ventricle (LV) which results in dilation, eccentric hypertrophy and eventually loss of function. Little is known about the impact of AR on LV gene expression. We therefore conducted a gene expression profiling study in the LV of male Wistar rats with chronic (9 months) and severe AR.
Multiple short-chain dehydrogenases/reductases are regulated in pathological cardiac hypertrophy.
Sex
View SamplesAllergic asthma is a complex trait. Several approaches have been used to identify biomarkers involved in this disease. This study aimed at demonstrating the relevance and validity of microarrays in the definition of allergic asthma expression pattern. The authors compared the transcript expressions of bronchial biopsy of 2 different microarray experiments done 2 years apart, both including nonallergic healthy and allergic asthmatic subjects (n = 4 in each experiment). U95Av2 and U133A GeneChips detected respectively 89 and 40 differentially expressed genes. Fifty-five percent of the U133A genes were previously identified with the U95Av2 arrays. The immune signaling molecules and the proteolytic enzymes were the most preserved categories between the 2 experiments, because 3/4 of the genes identified by the U133A were also significant in the U95Av2 study for both categories. These results demonstrate the relevance of microarray experiments using bronchial tissues in allergic asthma. The comparison of these GeneChip studies suggests that earlier microarray results are as relevant as actual ones to target new genes of interest, particularly in function categories linked to the studied disease. Moreover, it demonstrates that microarrays are a valuable technology to target novel allergic asthma pathways as well as biomarkers.
A comparison of two sets of microarray experiments to define allergic asthma expression pattern.
Specimen part, Disease
View Samples