We postulate here that the two singular characteristics of the mitochondrial oxidative phosphorylation system—the integration of three potentially antagonistic functions in the same structure and the double genetic origin of the components that assemble together in these molecular machines—make the evolution of an optimal system impossible. As a consequence the system is intrinsically mismatched and has to be continuously monitored, Adjusted and regulated in order to achieve the necessary and variable performance. Systematic transcriptomic, Metabolomic and biochemical evaluation of animals with identical nuclear DNA but different mtDNA haplotype strongly support the existence of intrinsic mismatch and reveals profound lifelong metabolic consequences on reactive oxygen species generation, Insulin signaling, Tendency towards obesity, And healthy ageing parameters, Including telomere atresia Overall design: Transcriptome analysis of conplastic mice versus WT mice in Liver and Heart tissues Conplastic strains were obtained after 10 generations of backcrossing to create a new line harboring the nuclear genome of one strain and the mtDNA of another (C57BL/6 and NZB were purchased from Harlan Laboratories).
Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing.
No sample metadata fields
View SamplesTo understand the transcriptional program by which GR regulates skin development, we performed a microarray analysis using the skin of E18.5 GR-/- and GR+/+ mouse embryos.
Glucocorticoid receptor regulates overlapping and differential gene subsets in developing and adult skin.
Specimen part
View SamplesWe report liver transcript profiling by RNA sequencing of Atp7b-/- and wild type mice at six weeks of age. Transcriptional network analysis of RNA-seq data reveals a highly interconnected network of transcriptional activators with over-representation of zinc-dependent and zinc-responsive transcription factors. Overall design: Wild type and Atp7b-/- Mice were maintained on strain C57BL x 129S6/SvEv. Housing was in shoebox cages and fed Mazuri Rodent diet (PMI Nutrition, Inc., Richmond, Indiana), containing 16 ppm Cu, 100 ppm Zn, and 235 ppm Fe and water ad libitum, with a 12-hour light/dark cycle. Six-week-old mice of both sexes were used for transcriptomic studies. Animals were sacrificed by carbon dioxide asphyxiation and liver tissue was harvested for RNA isolation. RNA sequencing was performed at the National Center for Genome Resources (NCGR) using the GAIIx platform. Average read quality was 38. An initial dataset was generated using two wild type and two Atp7b-/- samples with singleton 1x54 runs with 15,823,058; 8,149,631; 22,931,967 and 9,538,147 reads. A second paired end (2x54) dataset was generated to augment the initial singleton dataset with one wild type and one Atp7b-/- run resulting in 36,360,686 and 38,366,743 reads, respectively.
Altered zinc balance in the Atp7b<sup>-/-</sup> mouse reveals a mechanism of copper toxicity in Wilson disease.
Sex, Specimen part, Cell line, Subject
View SamplesTwo 96-well plates per genotype wild type and Myd88 knockout, 4 hour time series in 0.5 hr increments Overall design: Myd88 BMDM transcriptional profiling to complement TF-seq data
Simultaneous Pathway Activity Inference and Gene Expression Analysis Using RNA Sequencing.
Sex, Age, Specimen part, Cell line, Treatment, Subject, Time
View SamplesBone marrow derived macrophages treated with small molecules and stimulated with LPS Overall design: Wild-type BMDMs pretreated with small molecules for 30 minutes prior to stimulation with LPS
Simultaneous Pathway Activity Inference and Gene Expression Analysis Using RNA Sequencing.
Sex, Age, Specimen part, Cell line, Treatment, Subject, Time
View SamplesBone marrow derived macrophages treated with small molecules and stimulated with LPS Overall design: Wild-type BMDMs pretreated with small molecules for 30 minutes prior to stimulation with LPS
Simultaneous Pathway Activity Inference and Gene Expression Analysis Using RNA Sequencing.
Sex, Age, Specimen part, Cell line, Treatment, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
PGC-1β promotes enterocyte lifespan and tumorigenesis in the intestine.
Specimen part
View SamplesAnalysis of metabolic pathway gene expression. The hypothesis tested in the present study is to assess mRNA level changes in metabolic genes in intestinal tumors from APCmin mice overexpressing PGC-1 specifically in the intestine.
PGC-1β promotes enterocyte lifespan and tumorigenesis in the intestine.
Specimen part
View SamplesAnalysis of metabolic pathway gene expression. The hypothesis tested in the present study is to assess mRNA level changes in metabolic genes in enterocytes from intestine specific PGC-1 konckout mice.
PGC-1β promotes enterocyte lifespan and tumorigenesis in the intestine.
Specimen part
View SamplesSeveral reports have focused on the identification of biological elements involved in the development of abnormal systemic biochemical alterations in chronic kidney disease, but this abundant literature results most of the time fragmented. To better define the cellular machinery associated to this condition, we employed an innovative high-throughput approach based on a whole transcriptomic analysis and classical biomolecular methodologies. The genomic screening of peripheral blood mononuclear cells revealed that 44 genes were up-regulated in both chronic kidney disease patients in conservative treatment (CKD, n=9) and hemodialysis (HD, n=17) compared to healthy subjects (NORM) (p<0.001, FDR=1%). Functional analysis demonstrated that 11/44 genes were involved in the oxidative phosphorylation system (OXPHOS). Western blotting for COXI and COXIV, key constituents of the complex IV of OXPHOS, performed on an independent testing-group (12 NORM, 10 CKD and 14 HD) confirmed the elevated synthesis of these subunits in CKD/HD patients. However, complex IV activity was significantly reduced in CKD/HD patients compared to NORM (p<0.01). Finally, CKD/HD patients presented higher reactive oxygen species and 8-hydroxydeoxyguanosine levels compared to NORM. Taken together these results suggest, for the first time, that CKD/HD patients may have an impaired mitochondrial respiratory system and this condition may be both the consequence and the cause of an enhanced oxidative stress.
Mitochondrial dysregulation and oxidative stress in patients with chronic kidney disease.
Disease, Treatment, Subject
View Samples