Dengue virus (DENV) infects hundreds of millions of people annually, yet there is only a limited knowledge of the host immune response to dengue. Here, we used a systems biological approach to perform a detailed analysis of the innate immune response to DENV infection in the whole blood samples of acutely infected humans in Bangkok, Thailand. Transcriptomic analysis revealed that genes encoding pro-inflammatory mediators and type I IFN related proteins, were associated with high levels of virus during the first few days of infection. Individuals with low or negative viremia at the late stage of fever were enriched with genes associated with pathways involved in cell cycle, proliferation, cell metabolism and translational control. Meta-analysis showed significant enrichment in genes specific for innate cells (monocytes, macrophages and DCs) in the specimens with high VL and enrichment in genes specific for NK cells, CD4+ and CD8+ T cells as well as B cells in specimens with low VL. Furthermore, flow cytometric analysis revealed an expansion in the numbers of CD14+CD16+ monocytes and depletion of CD14dimCD16++ cells and BDCA-1+ myeloid DC in blood. Consistent with this, in a non-human primate model, infection with DENV boosted the numbers of CD14+CD16+ monocytes in the blood and in secondary lymphoid organs. In vitro, freshly isolated blood monocytes infected with DENV up regulated CD16 and mediated robust differentiation of resting B cells to CD27++CD38++ plasmablasts and IgG and IgM secretion. Taken together, these data provide a detailed picture of the innate response to dengue infection in humans, and highlight an unappreciated role for CD14+CD16+ monocytes in promoting the differentiation of plasmablasts and mediating antibody response to DENV.
Dengue virus infection induces expansion of a CD14(+)CD16(+) monocyte population that stimulates plasmablast differentiation.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Systems Analysis of Immunity to Influenza Vaccination across Multiple Years and in Diverse Populations Reveals Shared Molecular Signatures.
Specimen part, Subject, Time
View SamplesSystems approaches have been used to describe molecular signatures driving immunity to influenza vaccination in humans.
Systems Analysis of Immunity to Influenza Vaccination across Multiple Years and in Diverse Populations Reveals Shared Molecular Signatures.
Specimen part, Subject, Time
View SamplesSystems approaches have been used to describe molecular signatures driving immunity to influenza vaccination in humans.
Systems Analysis of Immunity to Influenza Vaccination across Multiple Years and in Diverse Populations Reveals Shared Molecular Signatures.
Specimen part, Subject, Time
View SamplesSystems approaches have been used to describe molecular signatures driving immunity to influenza vaccination in humans.
Systems Analysis of Immunity to Influenza Vaccination across Multiple Years and in Diverse Populations Reveals Shared Molecular Signatures.
Specimen part, Subject, Time
View SamplesSystems approaches have been used to describe molecular signatures driving immunity to influenza vaccination in humans.
Systems Analysis of Immunity to Influenza Vaccination across Multiple Years and in Diverse Populations Reveals Shared Molecular Signatures.
Specimen part, Subject, Time
View SamplesMany successful vaccines induce persistent antibody responses that can last a lifetime. The mechanisms by which they do so remain unclear, but emerging evidence suggests that activate dendritic cells (DCs) via Toll-like receptors (TLRs). For example, the yellow fever vaccine YF-17D, one of the most successful empiric vaccines ever developed, activates DCs via multiple TLRs to stimulate pro-inflammatory cytokines. Triggering specific combinations of TLRs in DCs can induce synergistic production of cytokines, which results in enhanced T cell responses, but its impact on antibody responses remain unknown. Learning the critical parameters of innate immunity that programs such antibody responses remains a major challenge in vaccinology. We demonstrated that immunization of mice with synthetic nanoparticles containing antigens plus Toll-like receptor (TLR) ligands 4 (MPL) + 7 (R837) induces synergistic increases in antigen-specific, neutralizing antibodies compared to immunization with a single TLR ligand. To determine whether there was any early programming of B cells, we isolated isotype switched, TCRbeta-CD11b-CD19+IgD-IgG+ B cells by FACS at 7 days post immunization with nanoparticles containing various adjuvants plus OVA, and performed microarray analyses to assess their molecular signatures.
Programming the magnitude and persistence of antibody responses with innate immunity.
Specimen part, Time
View SamplesAbstract
Evidence of a functional role for mast cells in the development of type 1 diabetes mellitus in the BioBreeding rat.
No sample metadata fields
View SamplesA prospective study was conducted in the Neonatal Intensive Care Unit of the University Children's hospital between September 1, 2008 and November 30, 2010. The entry criteria were (1) preterm birth below 32 weeks gestational age, (2) birthweight<1500g (VLBW). During the follow-up period, bronchopulmonary dysplasia (BPD) was diagnosed in 68 (61%) infants, including 40 (36%) children with mild disease, 13 (12%) with moderate and 15 (13%) with severe BPD. Forty-three babies served as a control group (no BPD).
Gene expression profiling in preterm infants: new aspects of bronchopulmonary dysplasia development.
Sex, Specimen part
View SamplesThe metabolic syndrome (MetS) is a collection of co-occurring complex disorders including obesity, hypertension, dyslipidemia, and insulin resistance. The Lyon Hypertensive (LH) and Lyon Normotensive (LN) rats are models of MetS sensitivity and resistance, respectively. To identify genetic determinants and mechanisms underlying MetS, 169 rats from an F2 intercross between LH and LN were studied. Multi-dimensional data were obtained including genotypes of 1536 SNPs, 23 physiological traits including blood pressure, plasma lipid and leptin levels, and body weight/adiposity, and more than 150 billion nucleotides of RNA-seq reads from the livers of 36 F2 individuals, 6 LH and 6 LN individuals. We identified 17 pQTLs (physiological quantitative trait loci) and 1200 eQTLs (gene expression quantitative trait loci). Systems biology methods were applied to identify 18 candidate MetS genes, including genes (Prcp and Aqp11) previously shown to be MetS-related. We found an eQTL hotspot on RNO17, which was also located within pQTLs for MetS-related traits. The genes regulated by this eQTL hotspot were mainly in two co-expression network modules (a mitochondria related module and a gene regulation related module) and were predicted to causally affect many MetS-related traits. Multiple evidences strongly and consistently support RGD1562963, a gene regulated in cis by this eQTL hotspot and possibly related to RNA stability, as the eQTL driver gene directly affected by genetic variation between LH and LN rats; the expression of this gene is also correlated with MetS-related traits. Our study sheds light on the intricate pathogenesis of MetS and proved that systems biology with high-throughput sequencing is a powerful method to study the etiology of complicated diseases. Overall design: RNA-Seq of the liver of 6 LH (Lyon Hypertensive) rats and 6 LN (Lyon Normotensive) rats and 36 F2 rats.
Systems biology with high-throughput sequencing reveals genetic mechanisms underlying the metabolic syndrome in the Lyon hypertensive rat.
No sample metadata fields
View Samples