We analyzed gene expression profiles of human testicular biopsies in men with idiopathic nonobstructive azoospermia. Using new generation oligonucleotide microarray platform GeneChip Human Gene 1.0 ST, we identified genes which could be potential biomarkers of azoospermia and molecular indicators that could determine a particular stage of impaired spermatogenesis. Thus, we shed light on genes which were had so far been weakly characterized and which were had never related to infertility before. These studies also included the comparative analysis of the hierarchical clustering of gene expression profile with histopathological data provided for azoospermic patients.
Potential biomarkers of nonobstructive azoospermia identified in microarray gene expression analysis.
Sex, Specimen part
View SamplesRepetitive sequences derived from transposons make up a large fraction of eukaryotic genomes and must be silenced to protect genome integrity. Repetitive elements are often found in heterochromatin; however, the roles and interactions of heterochromatin proteins in repeat regulation are poorly understood. Here we show that a diverse set of C. elegans heterochromatin proteins act together with the piRNA and nuclear RNAi pathways to silence repetitive elements and prevent genotoxic stress in the germ line. Mutants in genes encoding HPL-2/HP1, LIN-13, LIN-61, LET-418/Mi-2, and H3K9me2 histone methyltransferase MET-2/SETDB1 also show functionally redundant sterility, increased germline apoptosis, DNA repair defects, and interactions with small RNA pathways. Remarkably, fertility of heterochromatin mutants could be partially restored by inhibiting cep-1/p53, endogenous meiotic double strand breaks, or the expression of MIRAGE1 DNA transposons. Functional redundancy among these factors and pathways underlies the importance of safeguarding the genome through multiple means. Overall design: Synchronized, starved L1 stage worms were grown on NGM plates under one of two conditions. Condition 1: growth was at 20°C (hpl-2, let-418, lin-61, met-2 set-25, and wild-type N2) until the L4 stage and then worms were shifted to 25°C for 15-18 hours until they reached young adult stage. Condition 2: growth was at 15°C (lin-13, prg-1, nrde-2, nrde-2; let-418, and wild-type N2) until the L4 stage, and then worms were shifted to 25°C for 15-18 hours until they reached young adult stage. Worms were then washed off plates, flash frozen in liquid nitrogen, and stored at -80°C until use. RNA was extracted from frozen worms using TriPure (Roche). RNA was purified with Zymo Research RNA Clean and Concentrator-5 (Cambridge Bioscience) following DNase I digestion. Ribosomal RNA was depleted using Ribo-Zero rRNA Removal Kit (Human/Mouse/Rat) (Illumina). Libraries were prepared using the NEBNext Ultra Directional RNA Library Prep Kit for Illumina (New England Biolabs). Two biological replicates were prepared for each strain.
A team of heterochromatin factors collaborates with small RNA pathways to combat repetitive elements and germline stress.
Specimen part, Subject
View SamplesNeurofibromatosis type 1 (NF1) is a multi-system disease caused by mutations in the NF1 gene encoding a Ras-GAP protein, neurofibromin, which negatively regulates Ras signalling. Besides neuroectodermal malformations and tumours, the skeletal system is often affected (e.g. scoliosis and long bone dysplasia), demonstrating the importance of neurofibromin for development and maintenance of the musculoskeletal system. Here we focus on the role of neurofibromin in skeletal muscle development. Nf1 gene inactivation in the early limb bud mesenchyme using Prx1-cre (Nf1Prx1) resulted in muscle dystrophy characterised by fibrosis, reduced number of muscle fibres, and reduced muscle force. To gain insight into the molecular changes of the observed muscle dystrophy and fibrosis and to compare these with other known muscle dystrophies, we performed transcriptional profiling of the entire triceps muscles of threemonth-old wild type (wt) and mutant animals using Affymetrix high-density microrrays.
Neurofibromin (Nf1) is required for skeletal muscle development.
Age, Specimen part
View SamplesThe statsitcal model, latent pathway identification analysis (LPIA), was implemented for the analysis of A549 lung carcinoma cells treated with geldanamycin. Control and treated samples were assayed with Affymetrix HG_U133_plus_2 arrays and analyzed using LPIA. LPIA looks for statistically signcant evidence of dysregulation in a network of pathways constructed in a manner that explicitly links pathways through their common function in the cell. Geldanamycin (geld) is known to inhibit the molecular chaperone protein, Hsp90, and plays a role in preventing the malignant transformation and proliferation of healthy cells during oncogenesis. LPIA successfully identified pathways specific to geldanamycin effects at the gene transcription level.
Network-based prediction for sources of transcriptional dysregulation using latent pathway identification analysis.
Specimen part, Cell line, Time
View SamplesRegulatory T (Treg) cells are involved in self tolerance, immune homeostasis, prevention of autoimmunity, and suppression of immunity to pathogens or tumours. The forkhead transcription factor FOXP3 is essential for Treg cell development and function as mutations in FOXP3 cause severe autoimmunity in mice and humans. However, the FOXP3-dependent molecular mechanisms leading to this severe phenotype are not well understood. Here we introduce the chromatin remodelling enzyme SATB1 (special AT-rich sequence-binding protein-1) as an important target gene of FOXP3. So far, SATB1 has been associated with normal thymic T-cell development, peripheral T-cell homeostasis, TH1/TH2 polarization, and reprogramming of gene expression. In natural and induced murine and human FOXP3+ Treg cells SATB1 expression is significantly reduced. While there is no differential epigenetic regulation of the SATB1 locus between Treg and Teffector cells, FOXP3 reduces SATB1 expression directly as a transcriptional repressor at the SATB1 locus and indirectly via miR-155 induction, which specifically binds to the 3UTR of the SATB1 mRNA. Reduced SATB1 expression in FOXP3+ cells achieved either by overexpression or induction of FOXP3 is linked to significant reduction in TH1 and TH2 cytokines, while loss of FOXP3 function either by knock down or genetic mutation leads to significant upregulation of SATB1 and subsequent cytokine production. Alltogether, these findings demonstrate that reduced SATB1 expression in Treg cells is necessary for maintenance of a Treg-cell phenotype in vitro and in vivo and places SATB1-mediated T cell-specific modulation of global chromatin remodelling central during the decision process between effector and regulatory T-cell function.
Repression of the genome organizer SATB1 in regulatory T cells is required for suppressive function and inhibition of effector differentiation.
Specimen part, Disease, Disease stage, Treatment
View SamplesRNA expression was measured by RNA-seq in E17 wild type and Sall1-?SRM mutant kidney. Overall design: RNA expression in mutant kidney was compared to wild type stage matched kidney.
A Sall1-NuRD interaction regulates multipotent nephron progenitors and is required for loop of Henle formation.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Cellular Differentiation of Human Monocytes Is Regulated by Time-Dependent Interleukin-4 Signaling and the Transcriptional Regulator NCOR2.
Specimen part, Subject
View SamplesWhole transcriptome profiling (Illumina Microarray) of human ex vivo lymphocytes and monocytes, as well as of human monocyte-derived cells generated in vitro by activating CD14+ monocytes with MCSF, GMCSF or the combination of GMCSF and IL4
Cellular Differentiation of Human Monocytes Is Regulated by Time-Dependent Interleukin-4 Signaling and the Transcriptional Regulator NCOR2.
Specimen part
View SamplesWhole transcriptome profiling (RNA-Seq) of a time kinetics experiment containing human monocyte-derived cells, which were activated with IL4 either directly at the start of the culture, or at different hours after an initial activation with GMCSF alone. Cells being activated solely with GMCSF were added as controls Overall design: CD14+ monocytes were FACS-sorted from blood of human healthy donors and later activated in vitro with either GMCSF alone for 72 hours to obtain Mo-GMCSF[IL4 (0h)] cells as controls, with the combination of GMCSF and IL4 for 72 hours or 144 hours to obtain Mo-GMCSF[IL4 (0-72h)] or Mo-GMCSF[IL4 (0-144h)] cells, respectively, or with first GMCSF and then with the combination of GMCSF and IL4 for different durations. For the latter, monocytes were first activated with GMCSF for either 12, 24, 48 or 72 hours, and then with GMCSF plus IL4 until a total activation time of 144 hours. This resulted in Mo-GMCSF[IL4 (12-144h)], Mo-GMCSF[IL4 (24-144h)] , Mo-GMCSF[IL4 (48-144h)] and Mo-GMCSF[IL4 (72-144h)] cells, respectively.
Cellular Differentiation of Human Monocytes Is Regulated by Time-Dependent Interleukin-4 Signaling and the Transcriptional Regulator NCOR2.
Specimen part, Subject
View SamplesWhole transcriptome profiling (RNA-Seq) was performed on human Mo-GMCSF[IL4 (0-72h)] cells with either NCOR2 being knocked down or corresponding WT cells Overall design: CD14+ monocytes were FACS-sorted from blood of human healthy donors and later activated in vitro with the combination of GMCSF and IL4 for 72h to obtain Mo-GMCSF[IL4 (0-72h)] cells. During the last 24 hours of activation, either siRNAs targeting NCOR2 or scrambled RNAs were added to obtain NCOR2 knock down cells and corresponding WT cells, respectively
Cellular Differentiation of Human Monocytes Is Regulated by Time-Dependent Interleukin-4 Signaling and the Transcriptional Regulator NCOR2.
Specimen part, Subject
View Samples