Identification of gene expressed in the enriched inner medullary collecting duct cells in rat.
Transcriptional profiling of native inner medullary collecting duct cells from rat kidney.
Sex, Age, Specimen part
View SamplesPurpose: We used RNA-seq to determine the mRNA species and cell types presented in the whole kidney tissue. Methods: We extracted RNA from the whole kidney tissue and microdissected proximal tubules. cDNA libraries were constructed for paired-end sequencing and sequenced on Illumina HiSeq3000 platform.Reads were mapped to mouse Ensembl Genome by STAR and transcript abundances were calculated in the units of transcripts per million (TPM) using RSEM (https://github.com/deweylab/RSEM). Results and conclusion: Based on a variety of data types we curated a list of 43 cell types that are thought to exist in the kidney. Our data indicated that, If mRNA levels parallel protein levels, the contribution of proximal tubules to total mRNA in the renal tubule is also likely to be in the vicinity of 66%. Overall design: cDNAs from whole kidney tissue and microdissected proximal tubules were generated and sequenced using Illumina HiSeq 3000.
Representation and relative abundance of cell-type selective markers in whole-kidney RNA-Seq data.
Sex, Age, Specimen part, Cell line, Subject
View SamplesPurpose: PKA plays a crucial role in vasopressin signaling of renal collecting duct cells. To understand regulation of mRNA expression mediated by vasopressin/PKA signaling, mRNA expression was profiled by RNA-Seq in double knockout cells (both PKA catalytic genes) generated from mouse cortical collecting duct mpkCCD cell line versus control lines with intact PKA expression. Methods: PKA double knockout (dKO) cell lines were generated from mouse cortical collecting duct mpkCCDc11 cells by CRISPR/Cas-9 genome editing method. For mRNA profiling using RNA-Seq analysis, three biological replicates of control (not mutated in PKA two catalytic subunits) cell lines and PKA double knockout cell lines were used. The reads uniquely mapped on GENCODE mouse gene set were analyzed with HOMER (v4.8) and edgeR (v3.10.5). Results and conclusion: About 40-50 million sequence reads per sample were sucessfully mapped in the mouse genome (GENCODE, GPCm38.p5). Among total transcripts of the mouse genome, 10,190 transcripts (cutoff: Counts Per Million > 4 by edgeR) were considered as genes expressed in the cell lines. In differential expression analysis by standard edgeR analysis, 354 transcripts were differentially expressed between control cell lines and PKA dKO cell lines (FDR < 0.05). We also identified nine genes that were markedly decreased in PKA dKO cell lines (log2 PKA dKO/Control < -2, FDR < 0.05) including aquaporin-2 (Aqp2) and two genes that were markedly increased in PKA dKO cell lines (log2 PKA dKO/Control > 2, FDR < 0.05). These results suggest PKA signaling is important for regulation of expression of a very limited number of genes in vasopressin-responsive renal collecting duct cells. Overall design: Total mRNA profiling of three control cell lines and three PKA double knockout cell lines generated from mpkCCDc11 cell line were carried out by standard RNA-Seq protocols with deep sequencing on an Illumina HiSeq 3000.
Systems-level identification of PKA-dependent signaling in epithelial cells.
Specimen part, Subject
View SamplesA series contains a set of transcript intensity values measured by Affymetrix microarray.
Systems-level analysis of cell-specific AQP2 gene expression in renal collecting duct.
Sex, Specimen part
View SamplesThis series of microarray data contain transcript intensity of mpkCCD cells.
Systems-level analysis of cell-specific AQP2 gene expression in renal collecting duct.
No sample metadata fields
View SamplesFreshly isolated rat kidney proximal tubules were subjected for transcript profiling.
Systems-level analysis of cell-specific AQP2 gene expression in renal collecting duct.
Sex, Specimen part
View SamplesFreshly isolated rat kidney medullary thick ascending limbs were subjected for transcript profiling.
Systems-level analysis of cell-specific AQP2 gene expression in renal collecting duct.
Sex, Specimen part
View SamplesPurpose: Lithium salts, used for treatment of bipolar disorder, frequently induce nephrogenic diabetes insipidus (NDI), limiting therapeutic success. NDI is associated with loss of expression of the molecular water channel, aquaporin-2, in the renal collecting duct (CD). Here, we use the methods of systems biology in a well-established rat model of lithium-induced NDI to identify signaling pathways activated at the onset of polyuria. Methods: We carried out RNA-sequencing in cortical CDs microdissected from rats treated with lithium for 12-72 hours (vs. time controls). Administration of anti-inflammatory doses of dexamethasone to lithium-treated rats countered the loss of aquaporin-2 protein. Protein mass spectrometry in microdissected cortical CDs provided corroborative evidence, but also identified decreased abundance of several anti-oxidant proteins. Cortical thick ascending limbs of Henle were also microdissected for RNA-Seq at 72 hrs. We carried out RNA-Seq for 2-3 CCD sample per rat (1 lithium-treated rat versus 1 control at 12, 24, 36 hrs). Results and conclusion: Integration of new data with prior data about lithium effects at a molecular level leads to a signaling model in which lithium increases ERK activation leading to induction of NF-?B signaling and an inflammatory-like response that represses Aqp2 gene transcription. Overall design: We carried out RNA-sequencing and protein mass spectrometry in cortical CDs microdissected from rats treated with lithium. We identified signaling pathways that initiate Lithium-induced NDI using systems biology approaches.
RNA-Seq and protein mass spectrometry in microdissected kidney tubules reveal signaling processes initiating lithium-induced nephrogenic diabetes insipidus.
Sex, Specimen part, Cell line, Subject, Time
View SamplesMiR-221 overexpression leads to activation of apoptosis, growth arrest and reduced invasivness in PCa cells. Interaction of miR-221 with potential target genes was analyzed by a genome wide expression profiling.. Regulation of selected genes and proteins identified in the gene array analysis was confirmed by Real Time RT-PCR assay (IRF1, IRF2 SOCS3, STAT1), and Western Blotting. In total, 282 genes were upregulated and 64 downregulated based on a more than 2-fold difference to untransfected PC-3 cells. Regulated genes are involved in apoptosis, hemostasis, oxidative stress response, tumorigenesis and inflammation. We confirmed dysregulation of IRF-2 SOCS3, STAT1,IRF9. These results indicate that miR-221 overexpression might lead to activation of the JAK/STAT pathway and downregulation of miR-221 might contribute to tumorigenesis in PCa cells.
Survival in patients with high-risk prostate cancer is predicted by miR-221, which regulates proliferation, apoptosis, and invasion of prostate cancer cells by inhibiting IRF2 and SOCS3.
Cell line
View SamplesWe wanted to test the role of mammalian E proteins E2A and HEB in the development of T cells.
An essential role for the transcription factor HEB in thymocyte survival, Tcra rearrangement and the development of natural killer T cells.
Age, Specimen part
View Samples