Gene expression was performed in WT and tumor-bearing (TB) mice to determine the effects of a lung tumor on circadian clock of the liver.
Lung Adenocarcinoma Distally Rewires Hepatic Circadian Homeostasis.
Specimen part, Disease
View SamplesThe mammalian circadian clock system is made up of individual cell and tissue clocks that function as a coherent network, however it remains unclear which rhythmic functions of the liver clock are autonomous or rely on clocks in other tissues. Here, using mice which only have a functioning liver clock, we investigate the autonomous vs non-autonomous reatures of the liver clock and diurnal rhythmicity in the liver Overall design: 8-12 week-old, female WT, KO and Liver-RE BMAL1-stop-FL mice (see referenced paper for details) were fed ad libitum normal chow under 12hr light/ 12hr dark schedule. Livers were harvested every 4 hours over the circadian cycle at ZT0, 4, 8, 12, 16, 20 (n=3 per time point per group). Total RNA was extracted and used for RNA-seq.
Defining the Independence of the Liver Circadian Clock.
Specimen part, Subject
View SamplesThe circadian gene expression in peripheral tissue displays rhythmicity which is driven by the circadian clock and feeding-fasting cycle in mammals. In this study, circadian transcriptome was performed to investigate how fasting influences circadian gene regulation. Overall design: 8-week-old, male C57BL/6 mice were subjected to 24-hr fasting (FAST) or to ad libitum normal chow feeding (FED) under 12hr light/ 12hr dark schedule. Liver and gastrocnemius muscle were harvested every 4 hours over the circadian cycle at ZT0, 4, 8, 12, 16, 20 (n=3 per time point per group). Total RNA was extracted from liver and gastrocnemius muscle, and used for RNA-seq.
Fasting Imparts a Switch to Alternative Daily Pathways in Liver and Muscle.
Age, Cell line, Subject
View SamplesOrganisms have adapted to the changing environmental conditions within the 24h cycle of the day by temporally segregating tissue physiology to the optimal time of the day. On the cellular level temporal segregation of physiological processes is established by the circadian clock, a Bmal1 dependent transcriptional oscillator network. The circadian clocks within individual cells of a tissue are synchronised by environmental signals, mainly light, in order to reach temporally segregated physiology on the tissue level. However, how light mediated synchronisation of peripheral tissue clocks is achieved mechanistically and whether circadian clocks in different organs are autonomous or interact with each other to achieve rhythmicity is unknown. Here we report that light can synchronise core circadian clocks in two peripheral tissues, the epidermis and liver hepatocytes, even in the complete absence of functional clocks in any other tissue within the whole organism. On the other hand, tissue extrinsic circadian clock rhythmicity is necessary to retain rhythmicity of the epidermal clock in the absence of light, proving for the first time that the circadian clockwork acts as a memory of time for the synchronisation of peripheral clocks in the absence of external entrainment signals. Furthermore, we find that tissue intrinsic Bmal1 is an important regulator of the epidermal differentiation process whose deregulation leads to a premature aging like phenotype of the epidermis. Thus, our results establish a new model for the segregation of peripheral tissue physiology whereby the synchronisation of peripheral clocks is acquired by the interaction of a light dependent but circadian clock independent pathway with circadian clockwork dependent cues. Overall design: Determining the epidermal circadian transcriptome in the presence or absence of non-epidermal clocks after 6-7 days in complete darkness (DD).
BMAL1-Driven Tissue Clocks Respond Independently to Light to Maintain Homeostasis.
Age, Specimen part, Cell line, Subject
View SamplesOrganisms have adapted to the changing environmental conditions within the 24h cycle of the day by temporally segregating tissue physiology to the optimal time of the day. On the cellular level temporal segregation of physiological processes is established by the circadian clock, a Bmal1 dependent transcriptional oscillator network. The circadian clocks within individual cells of a tissue are synchronised by environmental signals, mainly light, in order to reach temporally segregated physiology on the tissue level. However, how light mediated synchronisation of peripheral tissue clocks is achieved mechanistically and whether circadian clocks in different organs are autonomous or interact with each other to achieve rhythmicity is unknown. Here we report that light can synchronise core circadian clocks in two peripheral tissues, the epidermis and liver hepatocytes, even in the complete absence of functional clocks in any other tissue within the whole organism. On the other hand, tissue extrinsic circadian clock rhythmicity is necessary to retain rhythmicity of the epidermal clock in the absence of light, proving for the first time that the circadian clockwork acts as a memory of time for the synchronisation of peripheral clocks in the absence of external entrainment signals. Furthermore, we find that tissue intrinsic Bmal1 is an important regulator of the epidermal differentiation process whose deregulation leads to a premature aging like phenotype of the epidermis. Thus, our results establish a new model for the segregation of peripheral tissue physiology whereby the synchronisation of peripheral clocks is acquired by the interaction of a light dependent but circadian clock independent pathway with circadian clockwork dependent cues. Overall design: Determining the epidermal circadian transcriptome in the presence or absence of non-epidermal clocks under light entrainment (LD).
BMAL1-Driven Tissue Clocks Respond Independently to Light to Maintain Homeostasis.
Age, Specimen part, Cell line, Subject
View SamplesAcromegaly is a pathological condition due to excess growth hormone (GH) secretion. Acromegaly patients exhibit a deterioration of health and many associated complications, such as cardiovascular issues, arthritis, kidney diseases, muscular weakness, and colon cancer. Since these complications are generalized throughout the body, we investigated the effect of GH excess on cellular integrity. Here, we established stable acromegaly model zebrafish lines that overexpress tilapia GH and the red fluorescence protein (RFP) reporter gene for tracking GH gene expression throughout generations, and performed RNA-Seq data analysis from different organs. Intriguingly, heatmap and Expression2Kinases (X2K) analysis revealed the enrichment of DNA damage markers in various organs. Moreover, H2A.X immunostaining analysis in acromegaly zebrafish larvae and the adult acromegaly model brain and muscle showed a robust increase in the number of DNA-damaged cells. Using Gene Set Enrichment Analysis (GSEA), we found that the acromegaly zebrafish model had impaired DNA repair pathways in the liver, such as double-strand break (DSB), homologous recombination repair (HRR), non-homologous end joining (NHEJ), nucleotide excision repair (NER), and translesion synthesis (TLS). Interestingly, the impairment of DNA repair was even more prominent in acromegaly model than in aged zebrafish (three years old). Thus, our study demonstrates that affection of cellular integrity is characteristic of acromegaly Overall design: Total mRNA obtained from 1-years old acromegaly zebrafish model muscle, brain, kidney, liver and 3-day old larvae compared to wild-type (WT) zebrafish were generated by deep sequencing using Illumina.
An Acromegaly Disease Zebrafish Model Reveals Decline in Body Stem Cell Number along with Signs of Premature Aging.
Age, Specimen part, Subject
View SamplesExpression profiling of two-weeks-old wild type, nar1-4/- and nbp35-3/- mutant seedlings. The cytosolic Fe -S cluster assembly pathway is involved in cytosolic and nucleus Fe-S protein maturation.
The role of Arabidopsis thaliana NAR1, a cytosolic iron-sulfur cluster assembly component, in gametophytic gene expression and oxidative stress responses in vegetative tissue.
Age, Specimen part
View SamplesAnalysis of sol2 mutant. SOL2 protein is a receptor-like kinase
The receptor-like kinase SOL2 mediates CLE signaling in Arabidopsis.
No sample metadata fields
View SamplesTranscriptome analysis of total RNA samples from HEK293-PIGS-KO and HEK293-PIGS-UBE2J1-DKO cells. To check whether KO of UBE2J1 upregulates genes of GPI biosthesis pathway, we used microarrays to analyze gene expression change by KO of UBE2J1 and comfirmed that known GPI pathway genes are not changed by ERAD-deficiency.
Cross-talks of glycosylphosphatidylinositol biosynthesis with glycosphingolipid biosynthesis and ER-associated degradation.
Cell line
View SamplesAnalysis of MOLT-4 cells at various time points up to 6 hours following treatment with mouse anti-CD47 antibody (MABL) and goat anti-mouse IgG (GAM) as the crosslinker of MABL. MABL induces apoptosis in CD47-positive MOLT-4 cells. Cell death signals via CD47 ligation were analyzed by using Affymetrix Human Genome U133A microarray.
A new disulfide-linked dimer of a single-chain antibody fragment against human CD47 induces apoptosis in lymphoid malignant cells via the hypoxia inducible factor-1α pathway.
Cell line, Time
View Samples