The goal of this study is to investigate the differential transcripted genes affected by CRISPR induced endoglin knockout in PASMC cells. Overall design: Total RNA was purified from NTC or ENG-/- PASMC cells using RNeasy Mini Kit (Qiagen, Hilden, Germany). RNA quality and concentration were assessed with Agilent Tapestation 200 (Agilent Technologies) and Qubit 2.0 (ThermoFisher Scientific). ~250-500 ng RNA were used for library construction. The NGS libraries were constructed using the KAPA Stranded mRNA-Seq Kits (KapaBioSystems). mRNA was captured using magnetic oligo-dT beads and 1st strand cDNA was synthesized using random priming. In order to preserve strand-specificity, 2nd strand synthesis, which converts the cDNA:RNA hybrid to double-stranded cDNA (dscDNA), was marked by dUTP incorporation. cDNA framents were A-tailed by adding dAMP to the 3''-ends of the dscDNA library fragments. dsDNA Illumina TruSeq "forked” adapters 3''-dTMP overhangs were then ligated to A-tailed library insert fragments. Each of the six libraries were ligated with a unique Truseq 6bp barcode. Library fragments were amplified using the KAPA HiFi HotStart polymerase. The strand marked with dUTP was not amplified, allowing strand-specific sequencing. Fragment length and library quality was assessed on a 2100 Bioanalyzer using the High Sensitivity DNA Kit (Agilent Technologies). Libraries were diluted to 10nM and pooled at equimolar ratios. The pool was then diluted to 2nM and denatured in NaOH following Illumina recommendations. 10pM of denatured library pool was loaded in one HiSeq lane and flowcell was clustered on the Illumina C-bot. 5% PhiX control was spiked-in. The flowcell was sequenced on a HiSeq 2500 V4 chemistry with 50bp Single read protocol. Data was demultiplexed and Fastq files were generated using BcptoFastq 1.8.4 script provided by Illumina.
Endoglin Mediates Vascular Maturation by Promoting Vascular Smooth Muscle Cell Migration and Spreading.
No sample metadata fields
View SamplesSmall RNA libraries from total RNA isolated from adult ovaries Overall design: Small RNA libraries were derived from Ovaries of the Founder strain and their offspring and their reciprocal offspring. RNA from 5 individual ovaries was pooled .
piRNA dynamics in divergent zebrafish strains reveal long-lasting maternal influence on zygotic piRNA profiles.
No sample metadata fields
View SamplesC.elegans small RNAs from HA::ALG-1, HA::ALG-2 and HA::RDE-1 IP and rde-1 mutants Overall design: Small RNAs were cloned from transgenic or mutant C. elegans adults. Sequencing was performed using 454 and Illumina platforms.
MicroRNA-directed siRNA biogenesis in Caenorhabditis elegans.
Cell line, Subject
View SamplesSo far, the majority of research on piRNAs was carried out in popular model organisms such as fruit fly and mouse, which however do not closely reflect human PIWI biology. Thus, we high-throughput sequenced and computationally analyzed piRNAs expressed in the adult testis of the pig owing to its full set of mammalian Piwi paralogs, availability for repeat experiments and the existence of elementary data from previous studies on the porcine PIWI/piRNA system. We provide an exhaustive characterization of porcine piRNAs and genomic piRNA clusters. In addition, we reveal that a considerable proportion of piRNAs matches protein coding genes, exhibiting characteristics that point to a biogenesis within the post-transcriptional silencing mechanism of the PIWI/piRNA pathway, commonly referred to as ping pong cycle. We further show that the majority of identified piRNA clusters spans exonic sequences of protein-coding genes or pseudogenes, which indicates the existence of different mechanisms for the generation of piRNAs directed against mRNA. Our data provides evidence that spliced mRNAs, derived from such loci, are not only targeted by piRNAs but are also subject to ping pong cycle processing. Finally, we demonstrate that homologous genes are targeted by piRNAs in pig, mouse and human. Altogether, this strongly suggests a role for mammalian piRNA clusters in gene regulation alongside of TE repression.
piRNAs from Pig Testis Provide Evidence for a Conserved Role of the Piwi Pathway in Post-Transcriptional Gene Regulation in Mammals.
Sex, Specimen part
View SamplesThe RNA-binding protein FUS is implicated in transcription, alternative splicing of neuronal genes and DNA repair. Mutations in FUS have been linked to human neurodegenerative diseases such as ALS (amyotrophic lateral sclerosis). We genetically disrupted fus in zebrafish (Danio rerio) using the CRISPR-Cas9 system. The fus knockout animals are fertile and did not show any distinctive phenotype. Mutation of fus induces mild changes in gene expression on the transcriptome and proteome level in the adult brain. We observed a significant influence of genetic background on gene expression and 3’UTR usage, which could mask the effects of loss of Fus. Unlike published fus morphants, maternal zygotic fus mutants do not show motoneuronal degeneration and exhibit normal locomotor activity. Overall design: We performed paired-end sequencing (100bp reads) of the polyA+ transcriptome from brains of five individuals with Fus-/- genotype and four with Fus wild type genotype. Note on RNA-Seq replicates: after performing first RNA sequencing on four replicates of Fus-/- and WT (labeled with the prefix "Sample_imb_ketting_2014_13_") we received a notice from Illumina stating a problem with the library preparation kit lot that was used to prepare the libraries. Due to that, we performed RNA sequencing a second time, using the same input RNA, except for the Fus knockout replicate #3, because there was not enough input RNA left. Instead, a different Fus knockout replicate (#1) was sequenced. However, we compared the mapped reads from sequencing run 1 and sequencing run 2 using plotCorrelaction from DeepTools, and the samples are highly correlated (at least 0.97 and 0.95, Spearman and Pearson correlation respectively). Therefore, we considered first ("Sample_imb_ketting_2014_13_") and second sequencing runs as technical replicates.
Characterization of genetic loss-of-function of Fus in zebrafish.
No sample metadata fields
View SamplesHigh throughput sequencing to derive function of cde-1 in endogenous RNAi in C. elegans Overall design: Small RNAs were cloned from C. elegans adults, following removal of tri-phosphate groups from 5'' end. Sequencing was performed using the Illumina 1G platform.
CDE-1 affects chromosome segregation through uridylation of CSR-1-bound siRNAs.
Specimen part, Subject
View Samplessmall RNA libraries from total RNA isolated from young adult animals Overall design: Wild-type and rem-1 mutant animals were used for RNA isolation. Regular libraries were made using adaptor ligations at both ends. In addition, librraies were made from oxidised and TAP treated RNA.
Differential impact of the HEN1 homolog HENN-1 on 21U and 26G RNAs in the germline of Caenorhabditis elegans.
Cell line, Subject
View Samplessmall RNA libraries from wild-type and Hen1 mutant testes were made with either polyA tailing (VASAGFPHen1minus/plus) or adapter ligation (Hen1Testis and WTTestis) and sequenced on an Illumina GAII platform. Overall design: RNA was isolated from total testis tissue of both Hen1 wildtype and Hen1 mutant animals. After size selection from gel, the small RNA libraries wre made.
Hen1 is required for oocyte development and piRNA stability in zebrafish.
No sample metadata fields
View SamplesThis data series contains small RNA high-throughput sequencing data for each of the mutator class genes. Samples are from stage-matched adult C. elegans grown at 20°C. Overall design: Small RNAs were isolated from synchronized wild type and mutant C. elegans and subjected to Illumina HiSeq sequencing. The series contains fastq and tab-separated files for 19 libraries.
MUT-14 and SMUT-1 DEAD box RNA helicases have overlapping roles in germline RNAi and endogenous siRNA formation.
Cell line, Subject
View SamplesHigh-throughput pyrosequencing of endogenous small RNAs from CSR-1 IP complexes and csr-1(tm892) and ego-1(om97) mutants with corresponding controls. RNAi-related pathways regulate diverse processes, from developmental timing to transposon silencing. Here, we show that in C. elegans the Argonaute CSR-1, the RNA-dependent RNA polymerase EGO-1, the Dicer-related helicase DRH-3, and the Tudor-domain protein EKL-1 localize to chromosomes and are required for proper chromosome segregation. In the absence of these factors chromosomes fail to align at the metaphase plate and kinetochores do not orient to opposing spindle poles. Surprisingly, the CSR-1 interacting small RNAs (22G-RNAs) are antisense to thousands of germline-expressed protein-coding genes. Nematodes assemble holocentric chromosomes in which continuous kinetochores must span the expressed domains of the genome. We show that CSR-1 interacts with chromatin at target loci, but does not down-regulate target mRNA or protein levels. Instead, our findings support a model in which CSR-1 complexes target protein-coding domains to promote their proper organization within the holocentric chromosomes of C. elegans. Overall design: 5 samples examined. Small RNAs that co-immunopercipitate with CSR-1 protein and input sample. Small RNAs from csr-1(tm892) and ego-1(om97) mutants and corresponding congenic wild type strain.
The Argonaute CSR-1 and its 22G-RNA cofactors are required for holocentric chromosome segregation.
Cell line, Subject
View Samples