Neurogenesis in the adult hippocampus contributes to information processing critical for cognition, adaptation, learning and memory, and is implicated in numerous neurological disorders. New neurons are continuously produced from neural stem cells via a well-controlled developmental process. The immature neuron stage defined by doublecortin (DCX) expression is the most sensitive to regulation by extrinsic factors. However, little is known about the dynamic biology within this critical interval that drives maturation and confers susceptibility to regulating signals. This study aims to test the hypothesis that DCX-expressing immature neurons in adult mouse hippocampus progress through developmental stages via activity of specific transcriptional networks. Using single-cell RNA-seq combined with a novel integrative bioinformatics approach, we discovered that individual immature neuron can be classified into distinct developmental subgroups based on characteristic gene expression profiles and subgroup-specific markers. Comparisons between immature and more mature subgroups revealed novel pathways involved in neuronal maturation. Genes enriched in more immature cells shared significant overlap with genes implicated in neurodegenerative diseases, while genes positively associated with neuronal maturation were enriched for autism-related gene sets. Our study thus discovers molecular signatures of individual adult-born immature neurons and unveils potential novel targets for therapeutic approaches to treat neurodevelopmental and neurological diseases. Overall design: mRNA sequencing and expression estimation in 64 individual DCX-dsRed+ cells isolated from transgenic DCX-dsRed mice by FACS sorting
Integrative Single-Cell Transcriptomics Reveals Molecular Networks Defining Neuronal Maturation During Postnatal Neurogenesis.
Specimen part, Cell line, Subject
View SamplesDendritic cells (DCs) and macrophages (MPs) are important for immunological homeostasis in the colon. We found that F4/80hi CX3CR1hi (CD11b+CD103-) cells account for 80% of mouse colonic lamina propria (cLP) MHC-IIhi cells. Both CD11c+ and CD11c- cells within this population were identified as MPs based on multiple criteria, including a MP transcriptome revealed by microarray analysis. These MPs constitutively released high levels of IL-10 at least partially in response to the microbiota via an MyD88-independent mechanism. In contrast, cells expressing low to intermediate levels of F4/80 and CX3CR1 were identified as DCs, based on phenotypic and functional analysis and comprise three separate CD11chi cell populations: CD103+CX3CR1-CD11b- DCs, CD103+CX3CR1-CD11b+ DCs and CD103-CX3CR1intCD11b+ DCs. In non-inflammatory conditions, Ly6Chi monocytes differentiated primarily into CD11c+, but not CD11c- MPs. In contrast, during colitis, Ly6Chi monocytes massively invaded the colon and differentiated into pro-inflammatory CD103-CX3CR1intCD11b+ DCs, which produced high levels of IL-12, IL-23, iNOS and TNF. These findings demonstrate the dual capacity of Ly6Chi blood monocytes to differentiate into either regulatory MPs or inflammatory DCs in the colon, and that the balance of these immunologically antagonistic cell types is dictated by microenvironmental conditions.
Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon.
No sample metadata fields
View SamplesOur understanding of cellular mechanisms by which animals regulate their response to starvation is limited despite the close relevance of the problem to major human health issues. L1 diapause of Caenorhabditis elegans, where newly hatched first stage larval arrested in response to food-less environment, is an excellent system to study the problem. We found through genetic manipulation and lipid analysis that ceramide biosynthesis, particularly those with longer fatty acid side chains, critically impacts animal survival during L1 diapause. Genetic and expression analyses indicate that ceramide likely regulate this response by affecting gene expression and activity in multiple regulatory pathways known to regulate starvation-induced stress, including the insulin-IGF-1 signaling (IIS) pathway, Rb and other pathways that mediate pathogen/toxin/oxidative stress responses. These findings provide an important insight into the roles of sphingolipid metabolism in not only starvation response but also aging and food-response related human health problems.
Starvation-Induced Stress Response Is Critically Impacted by Ceramide Levels in Caenorhabditis elegans.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrative DNA methylation and gene expression analyses identify DNA packaging and epigenetic regulatory genes associated with low motility sperm.
No sample metadata fields
View SamplesThe first embryonic cell divisions rely on maternally stored mRNA and proteins. The zygotic genome is initially transcriptionally silenced and activated later in a process called zygotic genome activation (ZGA). ZGA in any species is still a poorly understood process; the timing of transcription onset is controversial and the identity of the first transcribed genes unclear. Zebrafish, Danio rerio, is a rapidly developing vertebrate model, which is accessible to experimentation and global studies before, during and after ZGA. Overall design: To accurately determine the onset of ZGA and to identify the first transcripts in zebrafish, we developed a metabolic labeling method, utilizing the ribonucleotide analog 4-thio-UTP, which allows efficient and specific affinity purification of newly transcribed RNA. Using deep sequencing, we characterized the onset of transcription in zebrafish embryos at 128-, 256-, and 512-cell stages. We identified 592 nuclear-encoded zygotically transcribed genes, comprising 670 transcript isoforms. Mitochondrial genomes were highly transcribed at all time points. Further, bioinformatic analysis revealed an enrichment of transcription factors and miRNAs among the newly transcribed genes, suggesting mechanistic roles for the early genes that are required to activate subsequent gene expression programs in development. Interestingly, analysis of gene-architecture revealed that zygotically transcribed genes are often intronless and short, reducing transcription and processing time of the transcript. The newly generated dataset enabled us to compare zygotically transcribed genes over a broad phylogenetic distance with fly and mouse early zygotic genes. This analysis revealed that short gene length is a common characteristic for early zygotically expressed genes. However, we detected a poor level of overlap for shared orthologs.
The earliest transcribed zygotic genes are short, newly evolved, and different across species.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Transcriptional profiles underlying parent-of-origin effects in seeds of Arabidopsis thaliana.
No sample metadata fields
View SamplesCrossing plants of the same species but different ploidies can have dramatic effects on seed growth, but little is known about the alterations to transcriptional programmes responsible for this. Parental genomic imbalance particularly affects proliferation of the endosperm, with an increased ratio of paternally to maternally contributed genomes (paternal excess) associated with overproliferation, while maternal excess inhibits endosperm growth. One interpretation is that interploidy crosses disrupt the balance in the seed of active copies of parentally imprinted genes. This is supported by the observation that mutations in imprinted FIS-class genes of Arabidopsis thaliana share many features of the paternal excess phenotype. Here we investigated gene expression underlying parent-of-origin effects in Arabidopsis through transcriptional profiling of siliques generated by interploidy crosses and FIS-class mutants.
Transcriptional profiles underlying parent-of-origin effects in seeds of Arabidopsis thaliana.
No sample metadata fields
View SamplesThe following abstract from the submitted manuscript describes the major findings of this work.
A role for peroxisome proliferator-activated receptor γ coactivator-1 in the control of mitochondrial dynamics during postnatal cardiac growth.
Specimen part
View SamplesWe performed RNA-seq and ChIP-seq on clones of human cell lines carrying an inducible XIST transgene on 1p, 8p, or 12q to study the effects of allelic silencing in cis Overall design: Total gene expression and allelic changes were examined in HT1080 clones carrying an inducible XIST transgene on 1p, 8p, or 12q after induction by doxycycline. A replicate was done for the 8p clone treated with DOX. An additional 1p clone integrated with an empty vector, and an 1p, 8p, and 12q clone without induction were included as controls. ChIP was performed on the 8p clone to investigate the changes in H3K27 acetylation and trimethylation.
Impact of flanking chromosomal sequences on localization and silencing by the human non-coding RNA XIST.
No sample metadata fields
View SamplesThe objective of the experiment is to compare the transcriptomes of LSD1 knockout (KO) and control oocytes Overall design: RNA-seq analysis of GV oocytes, with three biological replicates for each genotype
Dynamic changes in histone modifications precede de novo DNA methylation in oocytes.
Specimen part, Cell line, Subject
View Samples