Excessive MS is known to result in disappearance of the alveolar hard line, enlargement of thePDL space, and destruction of alveolar bone, leading to occlusal traumatism. The regulatory role of MS is believed to play a critical role in the process of alveolar bone remodeling. However, little is known about the effect of excessive MS on expression of osteoclastogenesis-related genes in human PDL cells.
Hyperocclusion stimulates osteoclastogenesis via CCL2 expression.
Age, Specimen part
View SamplesTo examine function of PKCh for atherosclerosis, we compared the gene expression profiles of control Apoe-/- and Prkch-/-Apoe-/- mice by microarray analysis.
PKCη deficiency improves lipid metabolism and atherosclerosis in apolipoprotein E-deficient mice.
Sex, Age, Specimen part, Treatment
View SamplesBrown adipose tissue dissipates energy through heat and functions as a defense against cold and obesity. PPAR ligands have been shown to induce the browning of white adipocytes; however, the underlying mechanisms remain unclear. Here we show that PPAR ligands require full agonism to induce a brown fat gene program preferentially in subcutaneous white adipose. These effects require expression of PRDM16, a factor that controls the development of classical brown fat. Depletion of PRDM16 blunts the effects of the PPAR agonist rosiglitazone on the induced brown fat gene program. Conversely, PRDM16 and rosiglitazone synergistically activate the brown fat gene program in vivo. This synergy is tightly associated with an increased accumulation of PRDM16 protein, due in large measure to an increase in the half-life of the protein in agonist treated cells. Identifying compounds that stabilize PRDM16 protein may represent a novel therapeutic pathway for the treatment of obesity and diabetes.
PPARγ agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein.
Sex
View SamplesKLF7 null mice show profound axonal growth defects in the olfactory epithelium. The goal of this study was the identification of potential KLF7 target genes in olfactory sensory neurons.
Identification of genes regulated by transcription factor KLF7 in differentiating olfactory sensory neurons.
No sample metadata fields
View SamplesTo provide insights into the mechanism underlying the enhanced immunity of tag-24/octr-1 animals, we used genome microarrays to find clusters of genes commonly misregulated in tag-24 relative to wild-type animals grown on live P. aeruginosa.
Neuronal GPCR controls innate immunity by regulating noncanonical unfolded protein response genes.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The Sexual Dimorphism of Dietary Restriction Responsiveness in Caenorhabditis elegans.
Sex, Specimen part, Treatment
View SamplesMany species undergo sexual reproduction to distribute the parental genomes and increase the genomic diversity of the progeny. Among such species, sexual dimorphism is often displayed through morphology, size, behavior, and life-span, depending on the survival and reproduction strategies of the species. The nematode Caenorhabditis elegans has two sexes, hermaphrodite and male, and only the hermaphrodites, which produce both oocytes and sperm, are essential for the perpetuation of the species. In this study, we found that dietary restriction, which is the most reproducible way to retard aging in many species, extends the life-span of C. elegans hermaphrodites but not that of males. Our analysis revealed that fasting induces male-enriched genes in hermaphrodites and that the sex determination pathway affects life-span regulation, even after the completion of development, and is regulated by food availability. Furthermore, fasting activates the entire X-chromosome only in hermaphrodites. Our tiling array analysis identified a fasting-inducible, X-linked non-coding RNA for which expression positively correlated with the activation level of the X-chromosome and longevity. These links between the sex determination mechanism and dietary restriction at multiple levels may give priority to the survival of hermaphrodites during food shortages in C. elegans.
The Sexual Dimorphism of Dietary Restriction Responsiveness in Caenorhabditis elegans.
No sample metadata fields
View SamplesAim was to identify cellular factors that regulate HPV-16 late gene expression at the level of RNA processing
Heterogeneous Nuclear Ribonucleoprotein C Proteins Interact with the Human Papillomavirus Type 16 (HPV16) Early 3'-Untranslated Region and Alleviate Suppression of HPV16 Late L1 mRNA Splicing.
Specimen part, Cell line
View SamplesPRDM16 is a 140 kDa transcriptional coregulatory protein. PRDM16 has been shown to function as a bi-directional switch in brown fat cell fate by stimulating the development of brown fat cells from myf-5 positive myoblastic precursors.
Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex.
Cell line
View SamplesAlthough epigenetic mechanisms, such as specific histone modifications, control common and cell-specific genetic programs, a role for histone modifying enzymes in liver metabolism and disease has not been investigated. This report demonstrates that the combined loss of the histone methyltransferases EZH1 and EZH2 in mouse hepatocytes led to the disruption of H3K27me3 homeostasis by age three months, simple fatty liver by age six months and fatal fibrosis by age 15 months. Global and gene-specific reduction of H3K27me3 marks paralleled a concomitant increase of H3K4me3 marks at genes associated with chronic liver disease. Advanced disease was accompanied by widespread infiltration of immune cells, an increase of activated hepatic stellate cells and collagen deposition. Expression of genes from the cytochrome P450 family that control drug metabolism was already deregulated by age two months and mice were fatally hypersensitive to carbon tetrachloride (CCl4). These genetic experiments, for the first time, illustrate that the simple loss of EZH1/EZH2, which results in the disruption of epigenetic modifications, is sufficient for the progression of fatal liver disease. Overall design: RNA-seq and ChIP-seq were performed in liver tissues.
The methyltransferases enhancer of zeste homolog (EZH) 1 and EZH2 control hepatocyte homeostasis and regeneration.
No sample metadata fields
View Samples