Neurofibromatosis type 1 (NF1) is a multi-system disease caused by mutations in the NF1 gene encoding a Ras-GAP protein, neurofibromin, which negatively regulates Ras signalling. Besides neuroectodermal malformations and tumours, the skeletal system is often affected (e.g. scoliosis and long bone dysplasia), demonstrating the importance of neurofibromin for development and maintenance of the musculoskeletal system. Here we focus on the role of neurofibromin in skeletal muscle development. Nf1 gene inactivation in the early limb bud mesenchyme using Prx1-cre (Nf1Prx1) resulted in muscle dystrophy characterised by fibrosis, reduced number of muscle fibres, and reduced muscle force. To gain insight into the molecular changes of the observed muscle dystrophy and fibrosis and to compare these with other known muscle dystrophies, we performed transcriptional profiling of the entire triceps muscles of threemonth-old wild type (wt) and mutant animals using Affymetrix high-density microrrays.
Neurofibromin (Nf1) is required for skeletal muscle development.
Age, Specimen part
View SamplesWe used microarrays to investigate differential gene expression in HEK293T cells after transfection of the transgene of Iroquois 1 (IRX1). Microarray analysis revealed differential gene expression patterns of HEK293T cells after transient expression of IRX1. In total 8400 genes were deregulated by IRX1.
The IRX1/HOXA connection: insights into a novel t(4;11)- specific cancer mechanism.
Cell line
View SamplesPurpose: We performed a time-course single-cell RNA-seq of the somatic cells of the XX mouse gonads to study the cell population heterogeneity and the genetic program during their differentiation. Methods: We collected gonads from NR5A1-eGFP transgenic embryos at six embryonic stages: E10.5, E11.5, E12.5, E13.5, E16.5 and P6. Methods: Cells were capture with the C1 autoprep system and cDNA sequenced with Illumina HiSeq 2000. Results: One cell population was detected at E10.5 and give rise to both Granulosa and steroidogenic precursor cells. A precursor cell population remains undifferentiated at P6 and are likely to be theca cell precursors. Conclusion: Our study is, to date, the most granular transcriptomic study of the developing mouse ovary and provide a more complete model of somatic cell differentiation during female sex determination. Overall design: 663 cells were collected in total. 71 cells at E10.5, 106 cells at E11.5, 164 cells at E12.5, 106 cells at E13.5, 95 cells at E16.5, and 121 at P6. We performed two independent captures for each embryonic stage to reach a reasonable number of cells except for E10.5 where we capture enough cells in one experiment.
Dissecting Cell Lineage Specification and Sex Fate Determination in Gonadal Somatic Cells Using Single-Cell Transcriptomics.
Specimen part, Cell line, Subject
View Samples10 + 10 Holstein x Charolais F2 cattle were assigned to 2 groups with high and low IMF content, respectively; Musculus longissimus dorsi mRNA expression was determined by microarray analysis
Gene expression profile of Musculus longissimus dorsi in bulls of a Charolais × Holstein F2-cross with divergent intramuscular fat content.
Specimen part
View SamplesEicosanoids are potent regulators of gene expression of inflammatory cells. Pro- (leukotrienes B4 and C4) and anti-indflammatory (lipoxins A4 and B4) eicosanoids have been described in the literature but the detailed impact of these lipid mediators on the gene expression pattern of monocytic cells has not been studied in detail. We cultured the permanent monocytic cell line MonoMac 6 for 12 h in the absence (solvent control) and presence of these eicosanoids and quantified the differential gene expression patterns using the microarray technology.
Gene expression alterations of human peripheral blood monocytes induced by medium-term treatment with the TH2-cytokines interleukin-4 and -13.
No sample metadata fields
View SamplesThe study compares gene expression profile at 20 days post amputation of the zebrafish ventricular heart between dusp6 mutant and WT siblings. Overall design: Ventricular resection was performed and 20 dpa, hearts were extracted.
Dusp6 attenuates Ras/MAPK signaling to limit zebrafish heart regeneration.
No sample metadata fields
View SamplesEstablishment of an in vitro system to explore molecular mechanisms of mastitis susceptibility in cattle by comparative expression profiling of Escherichia coli and Staphylococcus aureus inoculated primary cells sampled from cows with different genetic predisposition for somatic cell score
Comparative expression profiling of E. coli and S. aureus inoculated primary mammary gland cells sampled from cows with different genetic predispositions for somatic cell score.
Disease, Treatment, Time
View Samples41 volunteers (male non-smokers) were exposed to formaldehyde (FA) vapors for 4 h per day over a period of 5 working days under strictly controlled conditions. For each exposure day, different exposure concentrations were used in a random order ranging from 0 up to 0.7 ppm. At concentrations of 0.3 ppm and 0.4 ppm, four peaks of 0.6 or 0.8 ppm for 15 min each were applied. During exposure, subjects had to perform bicycle exercises (about 80 W) four times for 15 min. Blood samples, exfoliated nasal mucosa cells and nasal biopsies were taken before the first and after the last exposure. Nasal epithelial cells were additionally sampled 1, 2 and 3 weeks after the end of the exposure period. The alkaline comet assay, the sister chromatid exchange (SCE) test and the cytokinesis-block micronucleus test (CBMNT) were performed with blood samples. The micronucleus test (MNT) was also performed with exfoliated nasal mucosa cells. The expression (mRNA level) of the GSH-dependent formaldehyde dehydrogenase (FDH, identical to alcohol dehydrogenase 5; ADH5; EC 1.2.1.46) was measured in blood samples by quantitative real-time RT-PCR with TaqMan probes. DNA microarray analyses using a full-genome human microarray were performed on blood samples and nasal biopsies of selected subgroups with the highest FA exposure at different days. None of the tests performed showed a biologically significant effect related to FA exposure. Under the experimental conditions of this study, inhalation of FA did not lead to genotoxic effects in peripheral blood cells and nasal mucosa and had no effect on the expression of the FDH gene. Inhalation of FA also did not cause biologically relevant alterations in the expression of genes in a microarray analysis with nasal biopsies and peripheral blood cells.
Assessment of genotoxic effects and changes in gene expression in humans exposed to formaldehyde by inhalation under controlled conditions.
Sex, Specimen part, Treatment, Subject
View SamplesAnalysis of genes regulated by Maf and donwstream of ErbB2 in P8 Schwann cells
Maf links Neuregulin1 signaling to cholesterol synthesis in myelinating Schwann cells.
Specimen part
View SamplesRegulation of mRNA stability by RNA-protein interactions contributes significantly to quantitative aspects of gene expression. We have identified potential mRNA targets of the AU-rich element binding protein AUF1. Myc-tagged AUF1 p42 was induced in mouse NIH-3T3 cells and RNA-protein complexes isolated using anti-myc tag antibody beads. Bound mRNAs were analyzed with Affymetrix microarrays. We have identified 508 potential target mRNAs that were at least 3-fold enriched compared to control cells without myc-AUF1. 22.3% of the enriched mRNAs had an AU-rich cluster in the ARED Organism database, against 16.3% of non-enriched control mRNAs. The enrichment towards AU-rich elements was also visible by AREScore with an average value of 5.2 in the enriched mRNAs versus 4.2 in the control group. Yet, many mRNAs were enriched without a high ARE score suggesting that AUF1 has a broader binding spectrum than standard AUUUA repeats. AUF1 did not preferentially bind to unstable mRNAs. Still, some enriched mRNAs were highly unstable, as those of TNFSF11 (known as RANKL), KLF10, HES1, CCNT2, SMAD6, and BCL6. We have mapped some of the instability determinants. HES1 mRNA appeared to have a coding region determinant. Detailed analysis of the RANKL and BCL6 3UTR revealed for both that full instability required two elements, which are conserved in evolution. In RANKL mRNA both elements are AU-rich and separated by 30 bases, while in BCL6 mRNA one is AU-rich and 60 bases from a non AU-rich element that potentially forms a stem-loop structure.
Short-lived AUF1 p42-binding mRNAs of RANKL and BCL6 have two distinct instability elements each.
Cell line
View Samples