This SuperSeries is composed of the SubSeries listed below.
The human primary hepatocyte transcriptome reveals novel insights into atorvastatin and rosuvastatin action.
Specimen part, Subject, Time
View SamplesWith particular emphasis on interactions between cholesterol homeostasis and drug metabolism we investigate the transcriptome of human primary hepatocytes treated by two commonly prescribed cholesterol lowering drugs atorvastatin and rosuvastatin and by rifampicin that serves as an outgroup as well as a model substance for induction of nuclear receptor PXR.
The human primary hepatocyte transcriptome reveals novel insights into atorvastatin and rosuvastatin action.
Specimen part, Subject, Time
View SamplesCumulus cells surrounding mature oocytes that developed to moruale/blastocyst stage on day 5 of IVF cycle were collected and used for gene expression profiling using Affymetrix Human Gene 1.0 ST Arrays in order to determine differences in gene expression between the modified natural and stimulated in vitro fertilization (IVF) procedures.
Differences in cumulus cells gene expression between modified natural and stimulated in vitro fertilization cycles.
Subject
View SamplesCREM (cAMP responsive element modulator) together with CREB and ATF-1 belong to the CREB family of transcriptional factors, that respond to cyclic AMP signaling and bind to cAMP responsive element (CRE) sites in promoters of selected genes. CREM can produce isoforms that have either activating or repressing functions, depending on the transcription of specific exons. In testis, it is involved in the regulation of spermatogenesis.
Novel insights into the downstream pathways and targets controlled by transcription factors CREM in the testis.
Specimen part, Time
View SamplesAffymetrix gene expression profiling in cumulus cells (CC) retrieved from patients undergoing GnRH agonists and GnRH antagonists IVF treatment.
Cumulus cells gene expression profiling in terms of oocyte maturity in controlled ovarian hyperstimulation using GnRH agonist or GnRH antagonist.
Subject
View SamplesHigh cholesterol diet and xenobiotic treatment induce changes in cholesterol homeostasis and drug metabolism. Mice were either 7 days on high cholesterol diet or were treated with phenobarbital. Liver samples were anayzed using Affymetrix GeneChip MOE430A.
The Sterolgene v0 cDNA microarray: a systemic approach to studies of cholesterol homeostasis and drug metabolism.
Sex, Age, Specimen part, Treatment
View SamplesCholesterol is one of the key molecules in mammals and the most striking examples of its deficiency are the inborn errors of cholesterol biosynthesis that manifest in severe whole body phenotypes. Liver, the principal site of cholesterol homeostasis, has rarely been investigated in these defects. We thus focused on the hepatocyte-specific deletion of lanosterol 14-demethylase (CYP51) catalyzing the rate-limiting step in the post-squalene part of cholesterol synthesis.
Lessons from hepatocyte-specific Cyp51 knockout mice: impaired cholesterol synthesis leads to oval cell-driven liver injury.
Sex, Specimen part, Treatment
View SamplesIn Arabidopsis, an individually darkened leaf (IDL) initiates senescence much quicker than a leaf from an entirely darkened plant (DP).
Darkened Leaves Use Different Metabolic Strategies for Senescence and Survival.
Specimen part
View SamplesUnperturbed cholesterol homeostasis is important for normal development and sexual maturation in mice. Cyp51 is the rate limiting step in the post-lanosteorl part of cholesterol biosynthesis. Unlike the full body knockout, hepatocyte specific Cyp51 knockout mice survive throughout adulthood, however their livers are severly affected. Several of the hepatocyte specific Cyp51 knockout mice develop severe liver injury or die prior to reaching adulthood (from 4-10 weeks of age; designated as runts). We aim to uncover the timing and the mechanistic background governing the liver damage and sex differences.
Disrupting Hepatocyte Cyp51 from Cholesterol Synthesis Leads to Progressive Liver Injury in the Developing Mouse and Decreases RORC Signalling.
Sex, Specimen part
View SamplesPIP3 is synthesized by PI3Ks and regulates complex cell responses, such as growth and migration. Signals that drive long-term reshaping of cell phenotypes are difficult to resolve because of complex feedback networks that operate over extended times. It is clear PIP3-dependent modulation of mRNA accumulation is important in this process but is poorly understood. We have quantified the genome-wide mRNA-landscape of non-transformed, breast epithelium-derived MCF10a cells and its response to transient (EGF or PI3Ka-selective inhibitor) or chronic (isogenic cells expressing an oncomutant PI3Ka allele or lacking the PIP3-phosphatase /tumour-suppressor, PTEN) perturbations of PIP3.These results show that whilst many mRNAs are changed by long-term genetic perturbation of PIP3 signaling (“butterfly effect”), a much smaller number change with a directional logic that aligns with different PIP3 perturbations, allowing discrimination of more directly regulated mRNAs. Our results also indicate that mRNAs can be differentially sensitive to specific features of PIP3 signals, that PIP3-sensitive mRNAs encode PI3K pathway components and identify the transcription factor binding motifs SRF and PRDM1 as important regulators of PIP3-sensitive mRNAs involved in cell movement. Overall design: RNA-seq on WT MCF10a, treated or not with A66 (Pi3Kalpha inhibitor), PIK3CA H1047R MCF10a and PTEN KO MCF10a. EGF time course stimulation applied (0, 15, 40, 90, 180, 300 min). A66 no EGF when A66 was applied for 300min w/o EGF simulation. All samples made in triplicate. Total of 75 samples.
Perturbations of PIP3 signalling trigger a global remodelling of mRNA landscape and reveal a transcriptional feedback loop.
No sample metadata fields
View Samples