Objective of this study was to find changes in gene expression of mouse multiple myeloma cells upon treatment with IGF-1
IGF-1 suppresses Bim expression in multiple myeloma via epigenetic and posttranslational mechanisms.
Specimen part, Disease, Disease stage
View SamplesThis SuperSeries is composed of the SubSeries listed below.
EZH2 inhibition in multiple myeloma downregulates myeloma associated oncogenes and upregulates microRNAs with potential tumor suppressor functions.
Cell line
View SamplesMultiple Myeloma (MM) is a plasma cell tumor localized to the bone marrow (BM). Despite current progress in improving patient outcome, MM remains largely incurable. Disease clonal and interpatient heterogeneity has hampered identification of a common underlying mechanism for disease establishment and have slowed the development of novel targeted therapies. Epigenetic aberrations are now emerging as increasingly important in tumorigenesis, thus selective targeting of crucial epigenetic enzymes may provide new therapeutic potential in cancer including MM. Recently, we and others suggested the histone methyltransferase enhancer of zeste homolog 2 (EZH2), to be a potential therapeutic target in MM. Now we show that pharmacological inhibition of EZH2 suppresses the MM cell growth through downregulation of MM-associated oncogenes; IRF-4, XBP-1, PRDM1/BLIMP-1and c-MYC. We also show that downregulation of these genes is mediated via reactivated expression of microRNAs with tumor suppressor functions; primarily miR125a-3p and miR320c. Using chromatin immunoprecipitation (ChIP) we demonstrate that miR125a-3p and miR320c are targets of EZH2 and H3K27me3 in MM cell lines and primary MM cells. Our results further highlight the importance of polycomb-mediated silencing in MM to include microRNAs with tumor suppressor activity. This novel role further strengthens the oncogenic features of EZH2 and its potential as a therapeutic target in MM.
EZH2 inhibition in multiple myeloma downregulates myeloma associated oncogenes and upregulates microRNAs with potential tumor suppressor functions.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genome-wide profiling of histone H3 lysine 27 and lysine 4 trimethylation in multiple myeloma reveals the importance of Polycomb gene targeting and highlights EZH2 as a potential therapeutic target.
Specimen part, Cell line
View Samplesin this study we define an epigenomic profile of PRC2 (H3K27me3 and bivalent) tragets in four newly diagnosed MM patients. Using Oncomine database we demonstarte that PRC2 targets are underexpressed with advanced ISS stages and correlated to poor outcome. Pharmacological inhibition of UNC1999 showed anti-myeloma potential in vitro by activating the expression genes related to apoptosis and cell differenatiation.
Genome-wide profiling of histone H3 lysine 27 and lysine 4 trimethylation in multiple myeloma reveals the importance of Polycomb gene targeting and highlights EZH2 as a potential therapeutic target.
Cell line
View SamplesAlu SINEs are the most numerous frequently occurring transcription units in our genome and possess sequence competence for transcription by RNA Pol III. However, through poorly understood mechanisms, the Alu RNA levels are maintained at very low levels in normal somatic cells with obvious benefits of low rates of Alu retrotransposition and energy-economical deployment of RNA Pol III to the tRNA genes which share promoter structure and polymerase requirements with Alu SINEs. Using comparative ChIP sequencing, we unveil that a repeat binding protein, CGGBP1, binds to the transcriptional regulatory regions of Alu SINEs thereby impeding Alu transcription by inhibiting RNA Pol III recruitment. We show that this Alu-silencing depends on growth factor stimulation of cells and subsequent tyrosine phosphorylation of CGGBP1. Importantly, CGGBP1 ensures a sequence-specific discriminative inhibition of RNA Pol III activity at Alu promoters, while sparing the structurally similar tRNA promoters. Our data suggest that CGGBP1 contributes to growth-related transcription by preventing the hijacking of RNA Pol III by Alu SINEs.
Growth signals employ CGGBP1 to suppress transcription of Alu-SINEs.
No sample metadata fields
View SamplesIntact living conduit vessels (umbilical veins) were exposed to normal or high intraluminal pressure, or low or high shear stress in combination with a physiological level of the other force. We used a unique vascular ex vivo perfusion system. After six hours of perfusion endothelial cells were isolated from the stimulated vessels and RNA was extracted. RNA from 16 experiments from each stimulation were pooled and analyzed in duplicate DNA microarrays.
Differential global gene expression response patterns of human endothelium exposed to shear stress and intraluminal pressure.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
MicroRNA regulate immunological pathways in T-cells in immune thrombocytopenia (ITP).
No sample metadata fields
View SamplesMicroRNA are small non-coding RNA molecules that regulate gene expression. To investigate the role of microRNA in ITP, we performed genome-wide expression analyses of mRNA and microRNA in T-cells from ITP patients and controls. We identified 1,915 regulated genes and 22 regulated microRNA that differed between ITP patients and controls. Seventeen of the 22 regulated microRNA were linked to changes in target gene expression; 57 of these target genes were associated with the immune system, e.g. T-cell activation and regulation of immunoglobulin production. CXCL13 and IL-21 were two microRNA target genes significantly increased in ITP. We could demonstrate increased plasma levels of CXCL13 and others have reported increased plasma levels of IL-21 in ITP. Thus, regulated microRNA were significantly associated with both gene and protein expression of molecules in immunological pathways. We suggest that microRNA may be important regulatory molecules involved in the loss of tolerance in ITP.
MicroRNA regulate immunological pathways in T-cells in immune thrombocytopenia (ITP).
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
MicroRNA regulate immune pathways in T-cells in multiple sclerosis (MS).
Specimen part, Disease, Disease stage
View Samples