Purpose
Chemokine Expression in Murine RPE/Choroid in Response to Systemic Viral Infection and Elevated Levels of Circulating Interferon-γ.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
BCAT1 restricts αKG levels in AML stem cells leading to IDHmut-like DNA hypermethylation.
Cell line, Treatment
View SamplesThe branched chain amino acid (BCAA) pathway and high levels of BCAA transaminase 1 (BCAT1) have recently been associated with aggressiveness in several cancer entities. However, the mechanistic role of BCAT1 in this process remains largely uncertain. By performing high-resolution proteomic analysis of human acute myeloid leukaemia (AML) stem cell (LSC) and non-LSC populations, we found the BCAA pathway enriched and BCAT1 overexpressed in LSCs. We show that BCAT1, which transfers -amino groups from BCAAs to -ketoglutarate (KG), is a critical regulator of intracellular KG homeostasis. Next to its role in the tricarboxylic acid (TCA) cycle KG is an essential co-factor for KG-dependent dioxygenases such as EGLN1 and the TET family of DNA demethylases. Knockdown of BCAT1 in leukaemia cells caused accumulation of KG leading to HIF1a protein degradation mediated by EGLN1. This resulted in a growth and survival defect and abrogated leukaemia-initiating potential. In contrast, overexpression (OE) of BCAT1 in leukaemia cells decreased intracellular KG levels and caused DNA hypermethylation via altered TET activity. BCAT1high AMLs displayed a DNA hypermethylation phenotype similar to cases carrying mutant isocitrate dehydrogenase (IDHmut), in which TET2 is inhibited by the oncometabolite 2-hydroxyglutarate. High levels of BCAT1 strongly correlate with shorter overall survival in IDHwtTET2wt, but not IDHmut or TET2mut AMLs. Gene sets characteristic for IDHmut AMLs were enriched in IDHwtTETwtBCAT1high patient samples. BCAT1high AMLs showed robust enrichment for LSC signatures and paired sample analysis revealed a significant increase of BCAT1 levels upon disease relapse. In summary, by limiting intracellular KG, BCAT1 links BCAA catabolism to HIF1a stability and regulation of the epigenomic landscape. Our results suggest the BCAA-BCAT1-KG pathway as a therapeutic target to compromise LSC function in IDHwtTET2wt AML patients.
BCAT1 restricts αKG levels in AML stem cells leading to IDHmut-like DNA hypermethylation.
Treatment
View SamplesWe constructed a polycistronic lentiviral vector to overexpress 3 germ cell specific genes (Stella, Oct4 and Nanos2) in mouse embryonic fibroblast (MEFs) and evaluated the transcriptome portrait in partially reprogrammed cells.We sequenced RNA samples from bulk cell population of two biological duplicates of MEF-GFP (control) and MEF-SON (overexpressed) 21 days post infection. Differential expression analysis of 50 M pair-end read per samples showed overexpression of neurogenesis, blood vessel and proliferation related genes and downregulation of chondroitin sulphate metabolic process, nitric oxide production and innate immune response genes. Overall design: Examination of whole transcriptome following concurrent overexpression of Stella, Oct4 and Nanos2 in MEFs.
Suppression of dsRNA response genes and innate immunity following Oct4, Stella, and Nanos2 overexpression in mouse embryonic fibroblasts.
Specimen part, Cell line, Subject
View SamplesCaesarean-delivered preterm pigs were fed 3 d of parenteral nutrition followed by 2 d of enteral formula feeding. Antibiotics (n=11) or control saline (n=13) were given twice daily from birth to tissue collection at d 5. NEC-lesions and intestinal structure, function, microbiology and immunity markers were recorded.
Antibiotics modulate intestinal immunity and prevent necrotizing enterocolitis in preterm neonatal piglets.
Specimen part, Treatment
View SamplesBACKGROUND
Emmprin and survivin predict response and survival following cisplatin-containing chemotherapy in patients with advanced bladder cancer.
No sample metadata fields
View SamplesCellular RNA levels are determined by transcription and decay rates, which are fundamental in understanding gene expression regulation. Measurement of these two parameters is usually performed independently, complicating analysis and introducing methodological biases that hamper direct comparison. Here, we present a simple approach of concurrent sequencing of S. cerevisiae polyA+ and polyA- RNA 3' ends to simultaneously estimate total RNA levels, transcription and decay rates from the same RNA sample. The transcription data generated correlate well with reported estimates and also reveal local RNA polymerase stalling and termination sites with high precision. Although the method by design uses brief metabolic labeling of newly synthesized RNA with 4-thiouridine, the results demonstrate that transcription estimates can also be gained from unlabeled RNA samples. These findings underscore the potential of the approach, which should be generally applicable to study a range of biological questions in diverse organisms. Overall design: RNA 3' end seq of total and 2min 4-thiouracil (4tU) labelled RNA from S. cerevisiae cells. Aliquots of RNA were directly subjected to pA+ RNA 3' end sequencing (noPap samples). A second aliquot was in vitro polyadenylated using E. coli poly(A) polymerase and ribodepleted before library preparation (xPap samples).
Simultaneous Measurement of Transcriptional and Post-transcriptional Parameters by 3' End RNA-Seq.
Cell line, Subject
View SamplesThe present study reports an unbiased analysis of the genetic profile and regulation of NKG2D expressing CD4 T-cells.An Affymetrix microarray analysis was used to explore the genetic profile of NKG2D+ versus NKG2D- CD4 T-cells. The genetic profile was studied by single gene analysis and gene set enrichment analysis. I found that several immune regulatory receptors was regulated differently in NKG2D+ versus NKG2D- CD4 T-cells. Futhermore, I found that NKG2D+ CD4 T-cells display a genetic profile of cytotoxic T-cells. The gene set enrichment analysis revealed a change in 19 processes, including ARF GTPase activator activity; RNA splicing; Signal transduction; Interspecies interaction between organisms; Regulation of ARF GTPase activity; Cell motility; Mitosis; Cell cycle; Anaphase-promoting complex-dependent proteasomal ubiquitin-dependent protein catabolic process; Induction of apoptosis by extracellular signals; Negative regulation of apoptosis; mRNA export from nucleus; Positive regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle; Cell division; Protein polymerization; Spliceosome assembly; Microtubule-based movement; Immune response; mRNA processing.
Regulation and gene expression profiling of NKG2D positive human cytomegalovirus-primed CD4+ T-cells.
Specimen part
View SamplesAlternative splicing and mRNA editing are known to contribute to transcriptome diversity. Although alternative splicing is pervasive and known to contribute to a variety of pathologies, including cancer, the genetic context for individual differences in isoform usage is still evolving. Similarly, although mRNA editing is ubiquitous and associated with important biological processes such as intracellular viral replication and cancer development, individual variations in and the genetic transmissibility of mRNA editing are equivocal. Here, we have used linkage analysis to show that both mRNA editing and alternative splicing are regulated by the macrophage genetic background and environmental cues. We show that distinct loci, potentially harboring variable splice factors, regulate the splicing of multiple transcripts. Additionally, we show that individual genetic variability at the Apobec1 locus results in differential rates of C-to-U(T) editing in murine macrophages; with mouse strains expressing mostly a truncated isoform of Apobec1 exhibiting lower rates of editing. As a proof of concept, we have used linkage analysis to identify 36 high confidence novel edited sites. These results provide a novel and complementary method that can be used to identify C-to-U editing sites in individuals segregating at specific loci and show that, beyond individual DNA sequence and structural changes, differential isoform usage and mRNA editing can contribute to intra-species genomic and phenotypic diversity. Overall design: Bone marrow derived macrophages (BMDM) from female AxB/BxA mice were left unstimulated or stimulated with IFNG/TNF, or CpG for 18 hrs or infected with infected with type II (Pru A7) for 8 hrs. The transcriptional response was then measured using the illumina RNA-seq protocol on an illumuna HiSeq 2000.
The genetic basis for individual differences in mRNA splicing and APOBEC1 editing activity in murine macrophages.
Age, Specimen part, Cell line, Treatment, Subject
View SamplesExpression data from HT-29 human colon adenocarcinoma cells treated with IFN- for 24 hr
Simultaneous profiling of 194 distinct receptor transcripts in human cells.
Specimen part, Cell line
View Samples