Rod-derived Cone Viability Factor (RdCVF, alias nxnl1) is a retina-specific protein identified for its therapeutic potential in supporting cone survival during retinal degeneration.
The disruption of the rod-derived cone viability gene leads to photoreceptor dysfunction and susceptibility to oxidative stress.
Disease, Disease stage
View SamplesA nxnl2 knockout mouse model was created and the transcriptome used to demonstrate that the retina is compromised by the absence of nxnl2.
Nxnl2 splicing results in dual functions in neuronal cell survival and maintenance of cell integrity.
Specimen part
View SamplesInflammation is common to many disorders and responsible for tissue and organ damage. However, the associated peripheral cytokine milieu is frequently dilute and difficult to measure, necessitating development of more sensitive and informative biomarkers for mechanistic studies, earlier diagnosis, and monitoring therapeutic interventions. Previously, we have shown that sera from type 1 diabetes (T1D) patients induces a unique disease-specific pro-inflammatory transcriptional profile in fresh peripheral blood mononuclear cells (PBMCs) compared to sera of healthy controls.
Use of transcriptional signatures induced in lymphoid and myeloid cell lines as an inflammatory biomarker in Type 1 diabetes.
Cell line, Treatment
View SamplesStatins and bisphosponates (BPs) are two distinct classes of isoprenoid pathway inhibitors targeting HMG-CoA reductase (upstream enzyme) and Farnesyl-pyrophospate synthase (downstream enzyme) respectively. Here we conducted a comparative study of two representatives of these classes, fluvastatin (Fluva) and Zoledronate (Zol), to assess the differences in their in vivo metastatic potentials and pharmacogenomic profiles. Both drugs, being administered after emergence of detectable metastases, appeared to be potent metastasis inhibitors in MDA-MB-231 breast cancer metastasis model. We observed a reduced number of metastatic sites under Fluva, but not Zol treatment. Combinatorial in vivo treatment by Fluva and Zol showed no synergy for these drugs, as reported earlier on the basis of in vitro studies (Budman DR, Oncology 2006), staying in line with similarity of their transcriptomic profiles. Comparison of Zol and Fluva transcriptomic profiles revealed similar patterns of affected genes (describe involved genes functions) through different kinetics (when treated with IC50 determined for 72h treatment, the majority of changes were observed after 24h incubation with Fluva , and only after 48h incubation with Zol at 72h-IC50 or after 24h treatment with its 3 times higher dose). We demonstrated here that targeting different enzymes of the same pathway neither necessarily leads to distinct changes in gene profiles, nor to synergy for in vivo anti-metastatic potential.
Transcriptome analysis and in vivo activity of fluvastatin versus zoledronic acid in a murine breast cancer metastasis model.
Cell line, Time
View SamplesLeaf samples were used. We exposed young seedlings to NaCl and drought.
Identification of cis-regulatory elements associated with salinity and drought stress tolerance in rice from co-expressed gene interaction networks.
Specimen part
View SamplesTwo-dimensional (2D) nanomaterials, an ultrathin class of materials such as graphene, nanoclays, transition metal dichalcogenides (TMDs), and transition metal oxides (TMOs), have emerged as a new generation of materials due to their unique properties relative to macroscale counterparts. However, little is known about the transcriptome dynamics following exposure to these nanomaterials. Here we investigate the interactions of 2D nanosilicates, a layered clay, with human mesenchymal stem cells (hMSCs) at the whole transcriptome level by high-throughput sequencing (RNA-seq). Analysis of cell-nanosilicate interactions by monitoring change in transcriptome profile uncovers key biophysical and biochemical cellular pathways triggered by nanosilicates. A widespread alteration of genes is observed due to nanosilicate exposure as more than 4,000 genes are differentially expressed. The change in mRNA expression levels reveal clathrin-mediated endocytosis of nanosilicates. Nanosilicate attachment to cell membrane and subsequent cellular internalization activate stress-responsive pathways such as mitogen activated protein kinase (MAPK), which subsequently directs hMSC differentiation towards osteogenic and chondrogenic lineages. This study provides transcriptomic insight on the role of surface-mediated cellular signaling triggered by nanomaterials and enables development of nanomaterials-based therapeutics for regenerative medicine. This approach in understanding nanomaterial-cell interactions, illustrates how change in transcriptomic profile can predict downstream effects following nanomaterial treatment. Overall design: Examination of affect of 2D nanosilicates on hMSCs
Widespread changes in transcriptome profile of human mesenchymal stem cells induced by two-dimensional nanosilicates.
Specimen part, Treatment, Subject
View SamplesRice (Oryza sativa, ssp. Japonica, cv. Nipponbare 1) plants were grown in a Conviron PGR 15 growth chamber using precise control of temperature, light, and humidity.<br></br>Diurnal (driven) conditions included 12L:12D light cycles and 31C/20C thermocycles in three different combinations. These were: photocycles (LDHH), 12 hrs. light (L)/12 hrs. dark (D) at a constant temperature (31C; HH); photo/thermocycles (LDHC): 12 hrs. light (L) /12 hrs. dark (D) with a high day temperature (31C) and a low night temperature (20C); and thermocycles (LLHC): continuous light (LL) with 12 hrs. high/12 hrs. low temperature (31C, day; 20C, night). Light intensity and relative humidity were 1000 micromol m-2s-2 and 60%, respectively.<br></br>Three-month-old rice plants were entrained for at least one week under the respective condition prior to initiation of each experiment. Leaves and stems from individual rice plants were collected every four hours for 48 hrs in driven (diurnal) conditions followed by a two day freerun spacer under continuous light/temperature followed by two additional days of sampling under the same continuous free run condition.<br></br>
Global profiling of rice and poplar transcriptomes highlights key conserved circadian-controlled pathways and cis-regulatory modules.
Age, Specimen part, Time
View SamplesRice (Oryza sativa, spp. Indica, cv. 93-11) plants were grown in a Conviron PGR 15 growth chamber using precise control of temperature, light, and humidity.<br></br>Diurnal (driven) conditions included 12L:12D light cycles and 31C/20C thermocycles in three different combinations. These were: photocycles (LDHH), 12 hrs. light (L)/12 hrs. dark (D) at a constant temperature (31C; HH); photo/thermocycles (LDHC): 12 hrs. light (L) /12 hrs. dark (D) with a high day temperature (31C) and a low night temperature (20C); and thermocycles (LLHC): continuous light (LL) with 12 hrs. high/12 hrs. low temperature (31C, day; 20C, night). Light intensity and relative humidity were 1000 micromol m-2s-2 and 60%, respectively.<br></br>Three-month-old rice plants were entrained for at least one week under the respective condition prior to initiation of each experiment. Leaves and stems from individual rice plants were collected every four hours for 48 hrs in driven (diurnal) conditions followed by a two day freerun spacer under continuous light/temperature followed by two additional days of sampling under the same continuous free run condition.
Global profiling of rice and poplar transcriptomes highlights key conserved circadian-controlled pathways and cis-regulatory modules.
Age, Specimen part, Time
View SamplesThe integrated stress response (ISR) controls cellular adaptations to nutrient deprivation, redox imbalances and ER stress. ISR genes are upregulated in stressed cells, primarily by the bZIP transcription factor ATF4 through its recruitment to cis-regulatory C/EBP:ATF response elements (CAREs) together with a dimeric partner of uncertain identity. Here we show that C/EBP:ATF4 heterodimers, but not C/EBP:ATF4 dimers, are the predominant CARE binding species in stressed cells. C/EBP and ATF4 associate with genomic CAREs in a mutually-dependent manner and co-regulate many ISR genes. By contrast, the C/EBP family members C/EBP and CHOP were largely dispensable for induction of stress genes. Cebpg/ MEFs proliferate poorly and exhibit oxidative stress due to reduced glutathione levels and impaired expression of several glutathione biosynthesis pathway genes. Cebpg/ mice (C57BL/6 background) display reduced body size and microphthalmia, similar to ATF4-null animals. In addition, C/EBP-deficient newborns die from atelectasis and respiratory failure which can be mitigated by in utero exposure to the anti-oxidant, N-acetyl-cysteine. Cebpg/ mice on a mixed strain background show improved viability but, upon aging, develop significantly fewer malignant solid tumors compared to WT animals. Our findings identify C/EBP as a novel anti-oxidant regulator and an obligatory ATF4 partner that controls redox homeostasis in normal and cancerous cells.
C/EBPγ Is a Critical Regulator of Cellular Stress Response Networks through Heterodimerization with ATF4.
Specimen part
View SamplesNeutrophils represent a fundamental mechanism of antimicrobial resistance and inflammation 1. Moreover, neutrophils have emerged as important players in the activation, orchestration and regulation of adaptive immune responses2,3. Neutrophils are a component of the tumor microenvironment (TME) and have been prevalently shown to promote progression 4-6. On the other hand, unleashed neutrophilic effectors have also been reported to mediate anti-cancer resistance7-11. Antibody-mediated depletion used to investigate the role of neutrophils in tumor progression suffers from limitations, including duration, specificity and perturbation of the system12. We therefore used a genetic approach to investigate the role of neutrophils in primary 3-methylcholanthrene (3-MCA)-induced sarcomagenesis. Neutrophils were found to play an essential role in resistance against primary carcinogenesis by driving an interferon-? dependent type 1 immune response. Neutrophil-dependent macrophage production of IL-12p70 led to type 1 polarization of CD4- CD8- unconventional aß T cells (UTCaß) in the TME. Single cell RNAseq analysis and in vivo evidence from two preclinical sarcoma models highlight the antitumor potential of a UTCaß subset. In the TCGA cohort of human undifferentiated pleomorphic sarcomas (UPS), unlike other sarcomas, granulocyte-colony stimulating factor receptor (CSF3R) expression and a neutrophil signature were associated with better outcome and with a type 1 immune response. The positive association between high neutrophil infiltration and improved clinical outcome was confirmed in an independent UPS cohort by immunohistochemistry. Thus, neutrophils, by driving a type 1 immune response and polarization of UTCaß, mediate resistance against murine and human sarcomas. Overall design: two experimental conditions, two biological replicates for each condition
Neutrophils Driving Unconventional T Cells Mediate Resistance against Murine Sarcomas and Selected Human Tumors.
Specimen part, Subject
View Samples