To identify systemic cytokine patterns in Chronic Graft-versus-Host-Disease (CGVHD), we profiled the gene expression of circulating monocytes. Pathway analysis identified two gene sets that were significantly upregulated across a broad range of patients with inflammatory and sclerotic presentations: (1) genes induced by Type I and Type II IFN, and (2) receptor genes for innate immune responses to cellular damage. Multiple IFN-inducible genes involved in signal transduction, anti-viral function, lymphocyte homeostasis, trafficking, and antigen presentation were increased. Furthermore, upregulation of TLR/NLR/CLR receptor genes for nucleic acids, ribonucleoproteins and annexin implicated response to damaged cells as a source of activation of inflammasomes and induction of Type I IFN.
Upregulation of IFN-Inducible and Damage-Response Pathways in Chronic Graft-versus-Host Disease.
Specimen part, Disease
View SamplesUnder conditions of hormonal adjuvant treatment the estrogen receptor apoprotein supports breast cancer cell cycling through the retinoic acid receptor 1 apoprotein.
During hormone depletion or tamoxifen treatment of breast cancer cells the estrogen receptor apoprotein supports cell cycling through the retinoic acid receptor α1 apoprotein.
Cell line
View SamplesTelogen (resting phase) hair follicles are more radioresistant than anagen (growth phase) ones. Irradiation of BALB/c mice in the anagen phase with -rays at 6 Gy induced hair follicle dystrophy, whereas irradiation in the telogen phase induced the arrest of hair follicle elongation without any dystrophy after post-irradiation depilation. In contrast, FGF18 was highly expressed in the telogen hair follicles to maintain the telogen phase and also the quiescence of hair follicle stem cells. Therefore, the inhibition of FGF receptor signaling at telogen induced the dystrophy after post-irradiation depilation. In addition, the administration of recombinant FGF18 suppressed cell proliferation in the hair follicles and enhanced the repair of radiation-induced DNA damage, so FGF18 protected the anagen hair follicles against radiation damage to enhance hair regeneration. Moreover, FGF18 reduced the expression of cyclin B1 and cdc2 in the skin and FGF18 signaling induced G2/M arrest in the keratinocyte cell line HaCaT, although no obvious change of the expression of DNA repair genes was detected by DNA microarray analysis. These findings suggest that FGF18 signaling for the hair cycle resting phase causes radioresistance in telogen hair follicles by arresting the proliferation of hair follicle cells.
FGF18 signaling in the hair cycle resting phase determines radioresistance of hair follicles by arresting hair cycling.
Sex, Specimen part
View SamplesAlthough various mechanisms have been inferred for combinatorial actions of multiple carcinogens, these mechanisms have not been well demonstrated in experimental carcinogenesis models. We evaluated mammary carcinogenesis initiated by combined exposure to various doses of radiation and chemical carcinogens. Female rats at 7 weeks of age were -irradiated (0.22 Gy) and/or exposed to 1-methyl-1-nitrosourea (20 or 40 mg/kg, single intraperitoneal injection) or 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (40 mg/kg/day by gavage for 10 days) and were observed until 50 weeks of age. The incidence of mammary carcinoma increased steadily as a function of radiation dose in the absence of chemicals; mathematical analysis supported an additive increase when radiation was combined with a chemical carcinogen, irrespective of the chemical species and its dose. Hras mutations were characteristic of carcinomas that developed after chemical carcinogen treatments and were overrepresented in carcinomas induced by the combination of radiation and MNU (but not PhIP), indicating an interaction of radiation and MNU at the level of initiation. The expression profiles of seven classifier genes, previously shown to distinguish two classes of rat mammary carcinomas, categorized almost all examined carcinomas that developed after individual or combined treatments with radiation (1 Gy) and chemicals as belonging to a single class; more comprehensive screening using microarrays and a separate test sample set failed to identify differences in gene expression profiles among these carcinomas. These results suggest that a complex, multilevel interaction underlies the combinatorial action of radiation and chemical carcinogens in the experimental model.
Molecular characterization of cancer reveals interactions between ionizing radiation and chemicals on rat mammary carcinogenesis.
Specimen part
View SamplesThe goal of this study was to investigate the role of intragenic CTCF in alternative pre-mRNA splicing through a combined CTCF-ChIP-seq and RNA-seq approach. CTCF depletion led to decreased inclusion of weak upstream exons. Overall design: CTCF ChIP-seq was performed in BJAB and BL41 B cell lines and normalized relative to Rabbit Ig control IP-seq reads. RNA-seq was performed in BJAB and BL41 cells transduced with shRNA against CTCF or RFP as a control, and in untransduced cells as well.
CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing.
Cell line, Subject
View SamplesMicroRNAs are small non-coding RNA species, some of which are playing important roles in cell differentiation. However, the level of participations of microRNAs in epithelial cell differentiation is largely unknown. Here, we found that expression levels of four microRNAs (miR-210, miR-338-3p, miR-33a and miR-451) were significantly increased in differentiated stage of T84 cells, compared with undifferentiated stage. Additionally, we demonstrate that miR-338-3p and miR-451 contribute to the formation of epithelial basolateral polarity by facilitating translocalization of beta1 integrin to the basolateral membrane. However, candidate target mRNAs of miR-338-3p and miR-451 and the mechanism behind observed phenomena is uncertain. Then, we performed comprehensive gene expression analysis to identify candidate target mRNAs and understand their mechanisms.
MicroRNA-338-3p and microRNA-451 contribute to the formation of basolateral polarity in epithelial cells.
Cell line, Treatment, Time
View SamplesWe found that a small molecule inhibitor of PRMT4 inhibited cell growth of a subset of multiple myeloma cell lines. To identify biomarkers that predict the sensitivity of myeloma cells to PRMT4 inhibition, we performed transcriptomic analysis of multiple myeloma cell lines. Overall design: Amplicon sequencing of thirteen multiple myeloma cell lines was performed on the Ion Torrent platform. Steady-state gene expression profile of sensitive cells were compaired with that of insensitive cells.
TP-064, a potent and selective small molecule inhibitor of PRMT4 for multiple myeloma.
Specimen part, Cell line, Subject
View SamplesIn our experiments with a xenograft model, mouse-IFN (mIFN) treatment was suggested to exaggerate the antitumor effects of sorafenib on hepatocellular carcinoma in vivo.
The in vivo antitumor effects of type I-interferon against hepatocellular carcinoma: the suppression of tumor cell growth and angiogenesis.
No sample metadata fields
View SamplesSTING plays a key role in detecting cytosolic DNA and induces type I interferon responses for host defense against pathogens. Although T cells highly express STING, its physiological role remains unknown. In this study, we show that costimulation of T cells via TCR and STING ligand induce type I IFN responses like innate immune cells. Overall design: Naïve CD4+ T cells were stimulated with anti-CD3/28 in the presence or absence of STING ligand and analyzed the transcriptome using Illumina HiSeq1500.
Reciprocal regulation of STING and TCR signaling by mTORC1 for T-cell activation and function.
Age, Specimen part, Cell line, Subject
View SamplesCholesteatoma arises from a tympanic membrane and expands in the middle ear. It erodes the surrounding bone and leads to hearing loss or brain abscess which is lethal complication. Currently, the only effective treatment is the complete surgical removal of cholesteatoma. However, possibility of recurrence is not satisfactory, other clinical treatment is desired. A mechanism of bone erosion in rheumatoid arthritis, which is one of the bone destructive disease, is progressing to be clarified. Receptor activator of NF-?B ligand (RANKL) secreted by synovial fibroblasts, T cells, and B cells lead to differentiation and activation of osteoclast precursor in rheumatoid arthritis. In contrast it has been still unclear why cholesteatoma erodes bone. In the current study we studied that osteoclasts statistically increased in cholesteatoma, and that fibroblasts in the prematrix of cholesteatoma express RANKL. In this study we studied that osteoclasts statistically increased in cholesteatoma, and that fibroblasts in the prematrix of cholesteatoma express RANKL. We investigated upstream of RANKL from RNA sequence results by Ingenuity Pathways Analysis, which is data base of abundance information about molecular biology. Overall design: To generate the transcriptome profiles of the permatrix of cholesteatoma and dermis cut by laser micro dissection from cholesteatoma, three pairs of both sample from the same patients were adapted to RNA sequencing.
Osteoclasts Modulate Bone Erosion in Cholesteatoma via RANKL Signaling.
Disease, Subject
View Samples