To determine the molecular basis of gene regulation in pancreatic ductal epithelial cells, we developed methods for the isolation of this cell population during mouse development and normal adult homeostasis, as well as in conditions with ductal features (acinar-to-ductal metaplasia (ADM), pancreatic intraepithelial neoplasia (PanIN) and pancreatic ductal adenocarcinoma (PDAC)). Our technique utilizes the specificity of Dolichos biflorus Agglutinin (DBA) lectin marking the entire normal ductal tree, including terminal intercalated ducts (putative sites of stem or progenitor cells) and ductal structures in ADM and PanIN. We used ferromagnetic-labeled DBA lectin to isolate ductal structures. Ductal cells were isolated under the following conditions: (1) Embryonic Development in wild type mice: E14.5, E15.5, E16.5, and postnatal day 1 (P1); (2) Injury and regeneration (pancreatitis) 0, 1, 3, 5 days following cerulein-induced acute pancreatitis. Cerulein is a cholecystokinin analog which produces a self-limited pancreatitis with injury and subsequent regeneration and repair, completed five days after insult; and (3) Pdx1-Cre;LSL-KrasG12D/+ mice aged 10 and 20 weeks that harbor PanIN lesions and a subset develop PDAC. Ductal/PanIN cells were isolated from these mice and appropriate control mice (Pdx1-Cre;Kras+/+).
The Prrx1 homeodomain transcription factor plays a central role in pancreatic regeneration and carcinogenesis.
Age, Specimen part, Treatment, Time
View Samples