The tumor suppressor p53 can induce various biological responses. Yet it is not clear whether it is p53 in vivo promoter selectivity that triggers different transcription programs leading to different outcomes. Our analysis of genome-wide chromatin occupancy by p53 using ChIP-seq (deposited in Sequence Read Archive database as SRP007261) revealed p53 default program, i.e. the pattern of major p53-bound sites that is similar upon p53 activation by nutlin3a, RITA or 5-FU in breast cancer cells, despite different biological outcomes triggered by these compounds. Parallel analysis of gene expression allowed identification of 280 previously unknown p53 target genes, including p53-repressed AURKA. The consensus p53 binding motif was present more frequently in p53-induced, than in repressed targets, indicating different mechanisms of gene activation versus repression. We identified several possible cofactors of p53, and found that STAT3 antagonised p53-mediated repression of a subset of genes, including AURKA. Finally, we showed that the expression of the novel p53 targets correlates with p53 status and survival in breast cancer patients.
Insights into p53 transcriptional function via genome-wide chromatin occupancy and gene expression analysis.
Cell line, Treatment
View SamplesAn important question for the use of the mouse as a model for studying human disease is the degree of functional conservation of genetic control pathways from human to mouse. The human placenta and mouse placenta show structural similarities but there has been no systematic attempt to assess their molecular similarities or differences. We built a comprehensive database of protein and microarray data for the highly vascular exchange region micro-dissected from the human and mouse placenta near-term. Abnormalities in this region are associated with two of the most common and serious complications of human pregnancy, maternal preeclampsia (PE) and fetal intrauterine growth restriction (IUGR), each disorder affecting ~5% of all pregnancies.
Comparative systems biology of human and mouse as a tool to guide the modeling of human placental pathology.
No sample metadata fields
View SamplesThe anaphylatoxin C5a is a potent mediator of innate immunity and promotes inflammation via its receptor C5aR1 upon complement system activation danger-associated molecular patterns. Both C5a and C5aR1 are thought to be contributing factors in inflammatory and infectious conditions of the bone. Bone fracture healing, for example, was significantly improved when applying a C5aR1-antagonist in a rodent model of severe systemic inflammation and osteoblasts were found to be target cells for C5a in this setting. Interestingly, osteoblasts up-regulate C5aR1 during osteogenic differentiation and after bone injury. Further, C5a induces inflammatory cytokines, such as IL-6, and the osteoclastogenic mediator RANKL in osteoblasts. However, the molecular mechanisms underlying C5a-C5aR1 signaling axis in osteoblasts remain unclear, and further targets of C5a are still elusive. Using microarray analysis, we analyzed intracellular events following C5aR1 activation in osteoblasts and defined up- or down-regulated genes and their belonging biological pathways.
C5aR1 interacts with TLR2 in osteoblasts and stimulates the osteoclast-inducing chemokine CXCL10.
Treatment
View SamplesGenome-wide comparative gene expression analysis of callus tissue of osteoporotic mice (Col1a1-Krm2 and Lrp5-/-) and wild-type were performed to identify candidate genes that might be responsible for the impaired fracture healing observed in Col1a1-Krm2 and Lrp5-/- mice.
Osteoblast-specific Krm2 overexpression and Lrp5 deficiency have different effects on fracture healing in mice.
Sex, Age, Specimen part
View SamplesFluorescent-labeled zebrafish RAS-induced embryonal rhabdomyosarcoma (ERMS) were created to facilitate in vivo imaging of tumor-propagating cells, regional tumor heterogeneity, and dynamic cell movements in diverse cellular compartments. Using this strategy, we have identified a molecularly distinct ERMS cell subpopulation that expresses high levels of myf5 and is enriched for ERMS-propagating potential when compared with other tumor-derived cells.
In vivo imaging of tumor-propagating cells, regional tumor heterogeneity, and dynamic cell movements in embryonal rhabdomyosarcoma.
Specimen part, Disease, Disease stage
View SamplesUsing a dataset of 54 pregnant and 113 age/stage-matched non-pregnant breast cancer patients with complete clinical and survival data; we evaluated the pattern of hot spot somatic mutations and performed transcriptomic profiling using Sequenom and Affymetrix, respectively. Breast cancer molecular subtypes were defined using PAM50 and 3-Gene classifiers. We performed Gene set enrichment analysis (GSEA) to evaluate pathways associated with diagnosis during pregnancy. We investigated the differential expression of cancer-related genes and published gene sets according to pregnancy. We finally investigated genes associated with disease-free survival.
Biology of breast cancer during pregnancy using genomic profiling.
Age, Disease stage
View SamplesThe FinHER trial is a multicentre phase 3 randomised adjuvant breast cancer trial that enrolled 1010 patients. The women were randomly assigned to receive three cycles of docetaxel or vinorelbine, followed by three cycles of fluorouracil, epirubicin, and cyclophosphamide.
Integrative proteomic and gene expression analysis identify potential biomarkers for adjuvant trastuzumab resistance: analysis from the Fin-her phase III randomized trial.
Age, Disease stage
View SamplesMicroarrays have revolutionized breast cancer (BC) research by enabling studies of gene expression on a transcriptome-wide scale. Recently, RNA-Sequencing (RNA-Seq) has emerged as an alternative for precise readouts of the transcriptome. To date, no study has compared the ability of the two technologies to quantify clinically relevant individual genes and microarray-derived gene expression signatures (GES) in a set of BC samples encompassing the known molecular BC's subtypes. To accomplish this, the RNA from 57 BCs representing the four main molecular subtypes (triple negative, HER2 positive, luminal A, luminal B), was profiled with Affymetrix HG-U133 Plus 2.0 chips and sequenced using the Illumina HiSeq 2000 platform. The correlations of three clinically relevant BC genes, six molecular subtype classifiers, and a selection of 21 GES were evaluated.
Transfer of clinically relevant gene expression signatures in breast cancer: from Affymetrix microarray to Illumina RNA-Sequencing technology.
Specimen part, Disease stage
View SamplesGene expression profiles were compared between regulatory T cells (Treg) and Effector CD4+ T cells in healthy B6 mice and sick mice with scurfy mutation.
Foxp3-deficient regulatory T cells do not revert into conventional effector CD4+ T cells but constitute a unique cell subset.
Sex, Specimen part
View SamplesBackground: The prognostic value of histologic grade (HG) in invasive lobular carcinoma (ILC) remains uncertain, and most ILC tumors are graded as HG2. Genomic grade (GG) is a 97-gene signature that improves the prognostic value of HG. This study evaluates whether GG may overcome the limitations of HG in ILC.
Genomic grade adds prognostic value in invasive lobular carcinoma.
Sex, Specimen part, Disease, Disease stage
View Samples