This SuperSeries is composed of the SubSeries listed below.
Artificially induced epithelial-mesenchymal transition in surgical subjects: its implications in clinical and basic cancer research.
Specimen part, Disease, Disease stage, Subject
View SamplesSurgical samples have long been used as important subjects for cancer research. In accordance with an increase of neoadjuvant therapy, biopsy samples have recently become imperative for cancer transcriptome. On the other hand, both biopsy and surgical samples are available for expression profiling for predicting clinical outcome by adjuvant therapy; however, it is still unclear whether surgical sample expression profiles are useful for the prediction by the use of biopsy samples because little has been done about comparative gene expression profiling between the two kinds of samples.
Artificially induced epithelial-mesenchymal transition in surgical subjects: its implications in clinical and basic cancer research.
Specimen part, Disease, Disease stage
View SamplesSurgical samples have long been used as important subjects for cancer research. In accordance with an increase of neoadjuvant therapy, biopsy samples have recently become imperative for cancer transcriptome. On the other hand, both biopsy and surgical samples are available for expression profiling for predicting clinical outcome by adjuvant therapy; however, it is still unclear whether surgical sample expression profiles are useful for the prediction by the use of biopsy samples because little has been done about comparative gene expression profiling between the two kinds of samples.
Artificially induced epithelial-mesenchymal transition in surgical subjects: its implications in clinical and basic cancer research.
Specimen part, Disease, Disease stage, Subject
View SamplesSurgical samples have long been used as important subjects for cancer research. In accordance with an increase of neoadjuvant therapy, biopsy samples have recently become imperative for cancer transcriptome. On the other hand, both biopsy and surgical samples are available for expression profiling for predicting clinical outcome by adjuvant therapy; however, it is still unclear whether surgical sample expression profiles are useful for the prediction by the use of biopsy samples because little has been done about comparative gene expression profiling between the two kinds of samples.
Artificially induced epithelial-mesenchymal transition in surgical subjects: its implications in clinical and basic cancer research.
Specimen part, Disease, Disease stage
View SamplesThis study was aimed at examining the effects of long-term of heat-stress on the gene expression of skeletal muscle hypertrophy. Heat- and stream-generating (HSG) sheets were placed on thigh laterally. The HSG sheets (heat-stress) were applied 8-hrs/day, once a day, 4 days/weeks, for 10 weeks. A muscle biopsy was taken from the vastus lateralis muscle (2 cm depth) of the treated leg before and after the experiment. Oligonucleotide microarray revealed that genes related to ATP-synthesis, protein synthesis and the molecular chaperonic activity were increased by heat stress. These results suggest that heat-stress might be a useful countermeasure for muscular atrophy during aging.
Responses of muscle mass, strength and gene transcripts to long-term heat stress in healthy human subjects.
Sex, Specimen part
View SamplesDNA microarray analysis was employed to investigate the transcriptome response to nitric oxide in Pseudomonas aeruginosa. We focused on the role played by the nitric oxide-response regulators DNR and FhpR and an oxygen-response regulator ANR in the response.
Fine-tuned regulation of the dissimilatory nitrite reductase gene by oxygen and nitric oxide in Pseudomonas aeruginosa.
No sample metadata fields
View SamplesTo investigate the gene expression profile of pellicle cells of Pseudomonas aeruginosa, microarray analysis was performed. Transcriptome profiles of pellicle cells and planktonic cells grown in LB medium were determined by Affymetrix GeneChip. Gene expression pattern that is specific to pellicle cells was evaluated by comparing the data set with that of planktonic cells.
Trade-off between oxygen and iron acquisition in bacterial cells at the air-liquid interface.
No sample metadata fields
View SamplesAcromegaly is a pathological condition due to excess growth hormone (GH) secretion. Acromegaly patients exhibit a deterioration of health and many associated complications, such as cardiovascular issues, arthritis, kidney diseases, muscular weakness, and colon cancer. Since these complications are generalized throughout the body, we investigated the effect of GH excess on cellular integrity. Here, we established stable acromegaly model zebrafish lines that overexpress tilapia GH and the red fluorescence protein (RFP) reporter gene for tracking GH gene expression throughout generations, and performed RNA-Seq data analysis from different organs. Intriguingly, heatmap and Expression2Kinases (X2K) analysis revealed the enrichment of DNA damage markers in various organs. Moreover, H2A.X immunostaining analysis in acromegaly zebrafish larvae and the adult acromegaly model brain and muscle showed a robust increase in the number of DNA-damaged cells. Using Gene Set Enrichment Analysis (GSEA), we found that the acromegaly zebrafish model had impaired DNA repair pathways in the liver, such as double-strand break (DSB), homologous recombination repair (HRR), non-homologous end joining (NHEJ), nucleotide excision repair (NER), and translesion synthesis (TLS). Interestingly, the impairment of DNA repair was even more prominent in acromegaly model than in aged zebrafish (three years old). Thus, our study demonstrates that affection of cellular integrity is characteristic of acromegaly Overall design: Total mRNA obtained from 1-years old acromegaly zebrafish model muscle, brain, kidney, liver and 3-day old larvae compared to wild-type (WT) zebrafish were generated by deep sequencing using Illumina.
An Acromegaly Disease Zebrafish Model Reveals Decline in Body Stem Cell Number along with Signs of Premature Aging.
Age, Specimen part, Subject
View SamplesTo assess the role of two redox-sensitive transcriptional regulators, RoxSR and ANR, in Pseudomonas aeruginosa under aerobic conditions, microarray analysis was performed. Transcriptome profiles of roxSR mutant and anr mutant aerobically grown in LB medium were determined by Affymetrix GeneChip at both the exponential phase and early stationary phase and compared to that of the wild type strain.
Differential expression of multiple terminal oxidases for aerobic respiration in Pseudomonas aeruginosa.
No sample metadata fields
View SamplesEwings sarcoma is highly malignant bone tumor that involves childhood and adolescent, and its nature has not been well understood. To clarify its cellular origin and the mechanisms of tumorigenesis, we used ex vivo approach to create a murine model for Ewings sarcoma. The osteochondrogenic progenitors derived from the embryonic superficial zone (eSZ, designated as FZ in the data set) of murine long bones at late gestation were purified by microdissection, introduced with EWS-FLI1 or EWS-ERG retroviruses and transplanted into nude mice. Ewings sarcoma-like small round cell sarcoma developed at 100% penetrance, whereas tumor induction was less effective when growth place (GP)-derived cells were used. The different response of gene expression to EWS-FLI1 between eSZ and GP cells suggests importance of the specific cellular context for EWS-FLI1 to induce Ewings sarcoma. The Wnt/-catenin pathway was involved in close relationship to the cellular context, with Dkk2 and Wipf1 as important downstream modulators. Furthermore, gene expression profiling revealed similarity between our models and human Ewings sarcoma. These results indicate that Ewings sarcoma originates from the embryonic osteochondrogenic progenitor.
Ewing's sarcoma precursors are highly enriched in embryonic osteochondrogenic progenitors.
Specimen part, Time
View Samples