Schizophrenia (SZ) and autism spectrum disorders (ASD) are highly heritable neuropsychiatric/neurodevelopmental disorders, although environmental factors, such as maternal immune activation (MIA), play a role as well. Inflammatory cytokines appear to mediate the effects of MIA on neurogenesis and behavior in animal models. However, drugs and cytokines that trigger MIA can also induce a febrile reaction, which could have independent effects on neurogenesis through heat shock (HS)-regulated cellular stress pathways. However, this has not been well-studied. As a first step towards addressing the role of fever in MIA, we used a recently described model of human brain development in which induced pluripotent stem cells (iPSCs) differentiate into 3-dimensional neuronal aggregates that resemble a first trimester telencephalon. RNA-seq was carried out on aggregates that were heat shocked at 39oC for 24 hours, along with their control partners maintained at 37oC. Overall, 186 genes showed significant differences in expression following HS (p<0.05), including known HS-inducible genes, as expected, as well as those coding for NGFR and a number of SZ and ASD candidates, including SMARCA2, DPP10, ARNT2, AHI1 and ZNF804A. The degree to which the expression of these genes decrease or increase during HS is similar to that found in copy loss and copy gain CNVs, although the effects of HS are likely to be more transient. Overall design: RNA-seq was carried out on neuronal aggregates as described by Mariani et al. with slight modification (PMID:22761314). For the heat shock experiment, a group of 49 day old aggregates was placed in an incubator set at 39C for 24 hours, while control sets of aggregates were maintained at 37C. The incubator conditions were otherwise unchanged. After detaching the aggregates, total cellular RNA was isolated using the miRNeasy Kit (Qiagen) according to the manufacturer's protocol. Lastly, RNAseq profiles of HS and Control were compared
Heat shock alters the expression of schizophrenia and autism candidate genes in an induced pluripotent stem cell model of the human telencephalon.
No sample metadata fields
View SamplesThe goal of this project is to study transcriptome change by knocking down ZNF804A, a schizophrenia and bipolar disorder candidate gene, in early neurons derived from iPSCs. Overall design: Neural progenitor cells (NPCs) were developed from human induced pluripotent stem cells (iPSCs) and transduced by two independent shRNA vectors targeting ZNF804A, a schizophrenia and bipolar disorder candidate gene. After recovery and selection in puromycin, neuronal differentiation was induced. After 14 days, RNA was recovered and analyzed by RNA-seq. The expression profiles were compared with NPCs that were transduced with scrambled control vectors. This corresponds to controls 1-3 and KD 1-3, which was carried out on a male iPSC line. Scramble 1 and 2 and KD1 and 2 are technical replicates. Scrambled 3 and KD 3 were carried out on an independent NPC culture. For control 4 and KD4, neuronal differentiation was induced, and on day 10 the cells were transduced with the same ZNF804A KD and scrambled control vectors used for scrambled control 3 and KD3. In addition, this last set was carried out on a female iPSC line
ZNF804A Transcriptional Networks in Differentiating Neurons Derived from Induced Pluripotent Stem Cells of Human Origin.
No sample metadata fields
View SamplesObjective: Physical exercise and vitamin E are considered effective treatments of nonalcoholic fatty liver and other metabolic diseases. However, vitamin E has also been shown to interfere with the adaptation to exercise training, in particular for the skeletal muscle. Here, we studied the hypothesis that vitamin E also interferes with the metabolic adaptation of the liver to acute exercise.
A Vitamin E-Enriched Antioxidant Diet Interferes with the Acute Adaptation of the Liver to Physical Exercise in Mice.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A history of obesity leaves an inflammatory fingerprint in liver and adipose tissue.
Sex, Age, Specimen part
View SamplesDieting is a popular yet often ineffective way to lower body weight, as the majority of people regain most of their pre-dieting weights in a relatively short time. The underlying molecular mechanisms driving weight regain and the increased risk for metabolic disease are still incompletely understood. Here we investigate the molecular alterations inherited from a history of obesity. In our model, male HFD fed obese C57BL/6J mice, were switched to a low caloric chow diet, resulting in a decline of body weight to that of lean mice. Within seven weeks after diet switch, most obesity associated phenotypes, such as body mass, glucose intolerance and blood metabolite levels were reversed. However, hepatic inflammation, hepatic steatosis as well as hypertrophy and inflammation of perigonadal, but not subcutaneous, adipocytes persisted in formerly obese mice. Transcriptional profiling of liver and perigonadal fat revealed an upregulation of pathways associated with immune function and cellularity. Thus, we show that weight reduction leaves signs of inflammation in liver and perigonadal fat, indicating that persisting proinflammatory signals in liver and adipose tissue could contribute to an increased risk of formerly obese subjects to develop the metabolic syndrome upon recurring weight gain.
A history of obesity leaves an inflammatory fingerprint in liver and adipose tissue.
Sex, Age, Specimen part
View SamplesThis study demonstrates that arthritis and heart valve stenosis comorbidity, the most common condition among RA and SpA patients, share common mesenchymal requirements converging in the pathogenic activation of resident mesenchymal origin fibroblasts in the Tnf?ARE mouse model. TNFR2 signaling, in this context, orchestrates the molecular mechanisms underlying arthritis and heart valve stenosis manifestation by regulating fibroblasts pathogenic activation status, cell proliferation and pro-inflammatory milieu. Finally this work highlights the complexity of TNFR2 functions since mesenchymal signaling is detrimental, whereas systemic TNFR2 provides protective signals that contain both pathologies Overall design: 3' RNA-Seq (QuantSeq) profiling of 2 cell types (SFs,VICs) in two different genotypes (TNF-DeltaARE, ColVIp75f/f-TNF-DeltaARE) and Wild type as control. 3 replicates per group.
Mesenchymal TNFR2 promotes the development of polyarthritis and comorbid heart valve stenosis.
Specimen part, Cell line, Subject
View SamplesWe performed gene expression microarray analysis of skeletal muscle biopsies from normal glucose tolerant subjects and type 2 diabetes subjects obtained during a 60 min bicycle ergometer exercise and the 180 min of recovery phase
Type 2 diabetes alters metabolic and transcriptional signatures of glucose and amino acid metabolism during exercise and recovery.
Age
View SamplesIn this survey we effectively combined transcriptomics, proteomics and targeted-metabolomics to analyse the temporal relationship of alterations in liver preceding and accompanying the development of HFD-mediated hepatic insulin resistance. To assess HFD-mediated alterations in physiological parameters, insulin sensitivity, and molecular adaptations in liver male C3HeB/FeJ mice treated with a high-fat diet (HFD) for 7, 14, or 21 days and compared to age- matched controls fed low-fat diet (LFD).
High fat diet-induced modifications in membrane lipid and mitochondrial-membrane protein signatures precede the development of hepatic insulin resistance in mice.
Sex, Age, Treatment, Time
View Samplessubstantial number of people at risk to develop type 2 diabetes could not improve insulin sensitivity by physical training intervention. We studied the mechanisms of this impaired exercise response in 20 middle-aged individuals who performed a controlled eight weeks cycling and walking training at 80 % individual VO2max. Participants identified as non-responders in insulin sensitivity (based on Matsuda index) did not differ in pre-intervention parameters compared to high responders. The failure to increase insulin sensitivity after training correlates with impaired up-regulation of mitochondrial fuel oxidation genes in skeletal muscle, and with the suppression of the upstream regulators PGC1 and AMPK2. The muscle transcriptome of the non-responders is further characterized by an activation of TGF and TGF target genes, which is associated with increases in inflammatory and macrophage markers. TGF1 as inhibitor of mitochondrial regulators and insulin signaling is validated in human skeletal muscle cells. Activated TGF1 signaling down-regulates the abundance of PGC1, AMPK2, mitochondrial transcription factor TFAM, and of mitochondrial enzymes. Thus, increased TGF activity in skeletal muscle can attenuate the improvement of mitochondrial fuel oxidation after training and contribute to the failure to increase insulin sensitivity.
TGF-β Contributes to Impaired Exercise Response by Suppression of Mitochondrial Key Regulators in Skeletal Muscle.
Specimen part
View SamplesMicrophthalmos is a rare congenital anomaly characterized by reduced eye size and visual deficits of variable degrees. Sporadic and hereditary microphthalmos has been associated to heterozygous mutations in genes fundamental for eye development. Yet, many cases are idiopathic or await the identification of molecular causes. Here we show that haploinsufficiency of Meis1, a transcription factor with an evolutionary conserved expression in the embryonic trunk, brain and sensory organs, including the eye, causes microphthalmic traits and visual impairment, in adult mice. In the trunk, Meis1 acts as a cofactor for genes of the Hox complex, mostly binding to Hox-Pbx target sequence on the DNA. By combining the analysis of Meis1 loss-of-function and conditional Meis1 functional rescue with ChIPseq and RNAseq approaches, we show that during the development of the optic cup, an Hox-free region, Meis1 binds instead to Hox/Pbx-independent Meis binding site, and coordinates, in a dose-dependent manner, retinal proliferation and differentiation by regulating the expression of components of the Notch signalling pathway. Meis1 also controls the activity of genes responsible for human microphthalmia and eye patterning so that in Meis1-/- embryos, the eye size is reduced and boundaries among the different eye territories are shifted or blurred. We thus propose that Meis1 is at the core of a genetic network implicated in microphthalmia, itself representing an additional candidate for syndromic cases of these ocular malformations. Overall design: Transcriptomics and Meis1 Occupancy analysis on mouse isolated optic cups and ChIP data for histone methylation marks were obtained from about 100 eyes of E10.5 CD1 embryos.
Meis1 coordinates a network of genes implicated in eye development and microphthalmia.
No sample metadata fields
View Samples