This SuperSeries is composed of the SubSeries listed below.
Interacting chemokine signals regulate dendritic cells in acute brain injury.
Sex, Specimen part
View SamplesWe inflicted TBI to wildetype (wt) mice in order to establish whether the anti-inflammatory agent cyclophosphamide can be used therapeutically.
Interacting chemokine signals regulate dendritic cells in acute brain injury.
Sex, Specimen part
View SamplesWe inflicted TBI to chemokine-deficient mouse lines in order to establish involvement of various signalling pathways that may be addressed therapeutically.
Interacting chemokine signals regulate dendritic cells in acute brain injury.
Sex, Specimen part
View SamplesLarge numbers of ribonucleotides are incorporated into the eukaryotic nuclear genome during S-phase due to imperfect discrimination against ribonucleoside triphosphates by the replicative DNA polymerases. Ribonucleotides, by far the most common DNA lesion in replicating cells, destabilize the DNA, and an evolutionarily conserved DNA repair machinery, ribonucleotide excision repair (RER), ensures ribonucleotide removal. Complete lack of RER is embryonically lethal. Partial loss-of-function mutations in the genes encoding subunits of RNase H2, the enzyme essential for initiation of RER, cause the SLE-related type I interferonopathy Aicardi-Goutières syndrome. Here we establish that selective inactivation of RER in mouse epidermis results in spontaneous DNA damage, epidermal hyperproliferation associated with loss of hair follicle stem cells and hair follicle function. The animals develop keratinocyte intraepithelial neoplasia and invasive squamous cell carcinoma with complete penetrance, despite potent type I interferon production and skin inflammation. Compromised RER-mediated genome maintenance might represent an important tumor-promoting principle in human cancer. Overall design: CD45+ CD49f- cells were were isolated from skin cell suspensions by FACS. Total RNA was isolated using the RNeasy Micro Kit+ (Qiagen). mRNA libraries were prepared using a SMART protocol and subjected to deep sequencing on an Illumina®HiSeq 2500.
Ribonucleotide Excision Repair Is Essential to Prevent Squamous Cell Carcinoma of the Skin.
Specimen part, Subject
View SamplesLarge numbers of ribonucleotides are incorporated into the eukaryotic nuclear genome during S-phase due to imperfect discrimination against ribonucleoside triphosphates by the replicative DNA polymerases. Ribonucleotides, by far the most common DNA lesion in replicating cells, destabilize the DNA, and an evolutionarily conserved DNA repair machinery, ribonucleotide excision repair (RER), ensures ribonucleotide removal. Complete lack of RER is embryonically lethal. Partial loss-of-function mutations in the genes encoding subunits of RNase H2, the enzyme essential for initiation of RER, cause the SLE-related type I interferonopathy Aicardi-Goutières syndrome. Here we establish that selective inactivation of RER in mouse epidermis results in spontaneous DNA damage, epidermal hyperproliferation associated with loss of hair follicle stem cells and hair follicle function. The animals develop keratinocyte intraepithelial neoplasia and invasive squamous cell carcinoma with complete penetrance, despite potent type I interferon production and skin inflammation. Compromised RER-mediated genome maintenance might represent an important tumor-promoting principle in human cancer. Overall design: Keratinocytes (CD49f+) cells were isolated from skin cell suspensions by FACS. Total RNA was isolated using the RNeasy Mini Kit+ (Qiagen). mRNA libraries were prepared and subjected to deep sequencing on an Illumina®HiSeq.
Ribonucleotide Excision Repair Is Essential to Prevent Squamous Cell Carcinoma of the Skin.
Specimen part, Subject
View SamplesFetal liver of E14.5 RNaseh2b KOF and Rnaseh2b wild type embryos was isolated, RNA was extracted and microarray analysis using Affymetrix Mouse 430 2.0 gene chip was performed
Mammalian RNase H2 removes ribonucleotides from DNA to maintain genome integrity.
Specimen part
View SamplesGene expression profiling in rat lumbar spinal cord following ventral root avulsion in the two inbred rat strains.
Genetically determined susceptibility to neurodegeneration is associated with expression of inflammatory genes.
Sex, Specimen part, Time
View SamplesExpression profiling of normal NIH3T3 and transformed NIH3T3 K-ras cell lines grown for 72 hours in optimal glucose availability (25 mM glucose) or low glucose availability (1 mM). Low glucose induces apoptosis in transformed cells as compared to normal ones.
Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth.
Cell line, Time
View SamplesEmerging biomarkers based on medical images and molecular characterization of tumor biopsies open up for combining the two disciplines and exploiting their synergy in treatment planning. We compared pretreatment classification of cervical cancer patients by two previously validated imaging- and gene-based hypoxia biomarkers, evaluated the influence of intratumor heterogeneity, and investigated the benefit of combining them in prediction of treatment failure. The imaging-based biomarker was hypoxic fraction, determined from diagnostic dynamic contrast enhanced (DCE)-MR images. The gene-based biomarker was a hypoxia gene expression signature determined from tumor biopsies. Paired data were available for 118 patients. Intratumor heterogeneity was assessed by variance analysis of MR images and multiple biopsies from the same tumor. The two biomarkers were combined using a dimension-reduction procedure. The biomarkers classified 75% of the tumors with the same hypoxia status. Both intratumor heterogeneity and distribution pattern of hypoxia from imaging were unrelated to inconsistent classification by the two biomarkers, and the hypoxia status of the slice covering the biopsy region was representative of the whole tumor. Hypoxia by genes was independent on tumor cell fraction and showed minor heterogeneity across multiple biopsies in 9 tumors. This suggested that the two biomarkers could contain complementary biological information. Combination of the biomarkers into a composite score led to improved prediction of treatment failure (HR:7.3) compared to imaging (HR:3.8) and genes (HR:3.0) and prognostic impact in multivariate analysis with clinical variables. In conclusion, combining imaging- and gene-based biomarkers enables more precise and informative assessment of hypoxia-related treatment resistance in cervical cancer, independent of intratumor heterogeneity.
Combining imaging- and gene-based hypoxia biomarkers in cervical cancer improves prediction of chemoradiotherapy failure independent of intratumour heterogeneity.
Specimen part
View SamplesHypoxia is known to regulate tumor-initiating cells and to have an effect on miRNA expression. We were interested in studying the role of hypoxia-induced miR-210 in colorectal cancer patient-derived sphere cultures.
Hypoxia-responsive miR-210 promotes self-renewal capacity of colon tumor-initiating cells by repressing ISCU and by inducing lactate production.
Specimen part
View Samples