Amyotrophic later sclerosis is a motor neuron disease accompanied by metabolic changes. PGC (PPAR gamma coactivator)-1alpha is a master regulator of mitochondrial biogenesis and function and of critical importance for all metabolically active tissues. PGC-1alpha is a genetic modifier of ALS.
ALS-causing mutations differentially affect PGC-1α expression and function in the brain vs. peripheral tissues.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
C9ORF72 GGGGCC Expanded Repeats Produce Splicing Dysregulation which Correlates with Disease Severity in Amyotrophic Lateral Sclerosis.
Specimen part, Subject
View SamplesObjective: An intronic GGGGCC-repeat expansion of C9ORF72 is the most common genetic variant of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. The mechanism of neurodegeneration is unknown, but a direct effect on RNA processing mediated by RNA foci transcribed from the repeat sequence has been proposed.
C9ORF72 GGGGCC Expanded Repeats Produce Splicing Dysregulation which Correlates with Disease Severity in Amyotrophic Lateral Sclerosis.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Loss of nuclear TDP-43 in amyotrophic lateral sclerosis (ALS) causes altered expression of splicing machinery and widespread dysregulation of RNA splicing in motor neurones.
Specimen part, Cell line, Treatment
View SamplesAims: Loss of nuclear TDP-43 characterises sporadic and most familial forms of amyotrophic lateral sclerosis (ALS). TDP-43 (encoded by TARDBP) has multiple roles in RNA processing. We aimed to determine whether 1) RNA splicing dysregulation is present in lower motor neurons in ALS and in a motor neuron-like cell model, and 2) TARDBP mutations (mtTARDBP) are associated with aberrant RNA splicing using patient-derived fibroblasts.
Loss of nuclear TDP-43 in amyotrophic lateral sclerosis (ALS) causes altered expression of splicing machinery and widespread dysregulation of RNA splicing in motor neurones.
Specimen part
View SamplesAims: Loss of nuclear TDP-43 characterises sporadic and most familial forms of amyotrophic lateral sclerosis (ALS). TDP-43 (encoded by TARDBP) has multiple roles in RNA processing. We aimed to determine whether 1) RNA splicing dysregulation is present in lower motor neurons in ALS and in a motor neuron-like cell model, and 2) TARDBP mutations (mtTARDBP) are associated with aberrant RNA splicing using patient-derived fibroblasts.
Loss of nuclear TDP-43 in amyotrophic lateral sclerosis (ALS) causes altered expression of splicing machinery and widespread dysregulation of RNA splicing in motor neurones.
Specimen part
View SamplesIn order to facilitate understanding of pigment cell biology, we developed a method to concomitantly purify melanocytes, iridophores, and retinal pigmented epithelium from zebrafish, and analyzed their transcriptomes. Comparing expression data from these cell types and whole embryos allowed us to reveal gene expression co-enrichment in melanocytes and retinal pigmented epithelium, as well as in melanocytes and iridophores. We found 214 genes co-enriched in melanocytes and retinal pigmented epithelium, indicating the shared functions of melanin-producing cells. We found 62 genes significantly co-enriched in melanocytes and iridophores, illustrative of their shared developmental origins from the neural crest. This is also the first analysis of the iridophore transcriptome. Gene expression analysis for iridophores revealed extensive enrichment of specific enzymes to coordinate production of their guanine-based reflective pigment. We speculate the coordinated upregulation of specific enzymes from several metabolic pathways recycles the rate-limiting substrate for purine synthesis, phosphoribosyl pyrophosphate, thus constituting a guanine cycle. The purification procedure and expression analysis described here, along with the accompanying transcriptome-wide expression data, provide the first mRNA sequencing data for multiple purified zebrafish pigment cell types, and will be a useful resource for further studies of pigment cell biology. Overall design: mRNA profiles of zebrafish pigment cells were generated using Illumina GAIIX sequencing
Gene expression analysis of zebrafish melanocytes, iridophores, and retinal pigmented epithelium reveals indicators of biological function and developmental origin.
No sample metadata fields
View SamplesTo evaluate gene expression changes in mixed tissue samples used as process controls in male Sprague Dawley rats over time.
Assessment of repeated microarray experiments using mixed tissue RNA reference samples.
No sample metadata fields
View SamplesTo understand plant adaptation to heat stress, gene expression profiles of Arabidopsis leaves under heat stress, during recovery and control condition were obtained using microarray. Microarray data listed responsible candidate genes for glycerolipid metabolism.
Landscape of the lipidome and transcriptome under heat stress in Arabidopsis thaliana.
Age, Specimen part
View SamplesDermal papilla cells isolated from the human hair follicle are capable of inducing hair growth in recipient epithelia. However, demonstrating disparity from rodent dermal papilla, human cells lose this inductive competance immediately upon growth in culture under normal growth conditions. We grew dermal papilla cells in hanging drop cultures that are morphologically akin to intact dermal papilla, and found that by enhancing the environment for aggregation, we could restore the inductive capacity of human dermal papilla cells in culture. The underlying genes that regulate the inductive potential of dermal papilla cells is not well understood, and we sought to use global profiling to identify key genes and pathways related to inductive competance within dermal papilla cells.
Microenvironmental reprogramming by three-dimensional culture enables dermal papilla cells to induce de novo human hair-follicle growth.
Sex, Specimen part, Subject
View Samples