Primary murine fetal liver cells were freshly isolated from day e14.5 livers and then sorted for successive differentiation stages by Ter119 and CD71 surface expression (ranging from double-negative CFU-Es to Ter-119 positive enucleated erythrocytes) [Zhang, et al. Blood. 2003 Dec 1; 102(12):3938-46]. RNA isolated from each freshly isolated, stage-sorted population was reverse-transcribed, labelled, and then hybridized onto 3' oligo Affymetrix arrays. Important erythroid specific genes as well as the proteins that regulate them were elucidated through this profiling based on coexpression and differential expression patterns as well as by extracting specific GO categories of genes (such as DNA-binding proteins).
Homeodomain-interacting protein kinase 2 plays an important role in normal terminal erythroid differentiation.
Specimen part
View SamplesWe performed RNA sequencing on melanopsin deleted retinas (Opn4-DTA/DTA) to determine potential cues involved in instructing cone photoreceptor positioning Overall design: RNAseq of whole P8 retinal extracts from wild-type littermate vs. Opn4DTA/DTA mice
Melanopsin Retinal Ganglion Cells Regulate Cone Photoreceptor Lamination in the Mouse Retina.
Specimen part, Subject
View SamplesIt is unclear how epigenetic changes regulate the induction of erythroid-specific genes during terminal erythropoiesis. Here we use global mRNA sequencing (mRNA-seq) and chromatin immunoprecipitation coupled to high-throughput sequencing (CHIP-seq) to investigate the changes that occur in mRNA levels, RNA Polymerase II (Pol II) occupancy and multiple post-translational histone modifications when erythroid progenitors differentiate into late erythroblasts. Among genes induced during this developmental transition, there was an increase in the occupancy of Pol II, the activation marks H3K4me2, H3K4me3, H3K9Ac and H4K16Ac, and the elongation methylation mark H3K79me2. In contrast, genes that were repressed during differentiation showed relative decreases in H3K79me2 levels yet had levels of Pol II binding and active histone marks similar to those in erythroid progenitors. We also found that relative changes in histone modification levels-in particular, H3K79me2 and H4K16ac-were most predictive of gene expression patterns. Our results suggest that in terminal erythropoiesis both promoter and elongation-associated marks contribute to the induction of erythroid genes, while gene repression is marked by changes in histone modifications mediating Pol II elongation. Our data maps the epigenetic landscape of terminal erythropoiesis and suggests that control of transcription elongation regulates gene expression during terminal erythroid differentiation. Overall design: Mouse fetal liver cells are double-labeled for erythroid-specific TER119 and non erythroid-specific transferrin receptor (CD71) and then sorted by flow-cytometry. E14.5 fetal livers contain at least five distinct populations of cells (R1 through R5); as they progressively differentiate they gain TER119 and then gain and subsequently lose CD71. CFU-E cells and proerythroblasts make up the R1 population; R2 consists of proerythroblasts and early basophilic erythroblasts; R3 includes early and late basophilic erythroblasts; R4 is mostly polychromatophilic and orthochromatophilic erythroblasts; and R5 is comprised of late orthochromatophilic erythroblasts and reticulocytes. We have sorted for R2-R5 cells for RNA-seq experiment.
Gene induction and repression during terminal erythropoiesis are mediated by distinct epigenetic changes.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity.
Age, Specimen part, Treatment
View SamplesAnalysis of brown adipose tissue from Yin Yang 1 (YY1) brown fat specific knockout mice fed a high fat diet for 3 months. YY1 deficiency in brown adipose tissue leads to strong thermogenic deficiency. The goal was to identify the genes controlled by YY1 responsible of brown fat defective function.
Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity.
Age, Specimen part, Treatment
View SamplesAnalysis of visceral white adipose tissue (EWAT) from Yin Yang 1 adipose-specific knockout mice exposed to cold (4C) for 4 days.
Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity.
Age, Specimen part, Treatment
View SamplesAnalysis of subcutaneous adipose tissue (IWAT) from Yin Yang 1 brown fat specific knockout mice fed a high fat diet for 2 weeks. The goal was to identify a gene signature of IWAT browning in YY1 mutant mice.
Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity.
Age, Specimen part, Treatment
View SamplesPurpose: The goals of this study are to identify the transcriptional profile of retinal ganglion cells (RGCs) with the capacity to regenerate an axon, and contrast this profile with the profile of RGCs that cannot regenerate an axon. Methods: See sample pages for protocols for tissue preparation, RNA extraction and purification, library construction and data processing. Results: RNA from the 12 samples was sequenced to an average depth of 42 million reads. Genes were considered expressed if a gene had an expression of 1 count per million in 3 of the 12 samples. There were 13,406 genes that met this criterion. Conclusions: Our study represents the first analysis by NGS of highly-purified RGCs in the context of axonal injury Overall design: RGC mRNA profiles of melanopsin RGCs and ON-OFF Direction Selective Ganglion Cells (ooDSGCs) were generated by deep sequencing in triplicate, using Illumina HiSeq 2500.
Thrombospondin-1 Mediates Axon Regeneration in Retinal Ganglion Cells.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Role of Tet1/3 Genes and Chromatin Remodeling Genes in Cerebellar Circuit Formation.
Specimen part
View SamplesTranscriptome analysis of mRNA samples purified from developing cerebellar granule cells and ES cell-derived granule cells using translating ribosome affinity purification (TRAP) method.
Role of Tet1/3 Genes and Chromatin Remodeling Genes in Cerebellar Circuit Formation.
Specimen part
View Samples