The mitochondrial matrix is unique in that it must integrate folding and assembly of proteins derived from nuclear and mitochondrial genomes. In C. elegans, the mitochondrial unfolded protein response (UPRmt) senses matrix protein misfolding and induces a program of nuclear gene expression, including mitochondrial chaperonins, to promote mitochondrial proteostasis. While misfolded mitochondrial matrix-localized ornithine trans-carbamylase (OTC) induces chaperonin expression, our understanding of mammalian UPRmt is rudimentary, reflecting a lack of acute triggers for UPRmt activation. This limitation has prevented analysis of the cellular responses to matrix protein misfolding and the effects of UPRmt on mitochondrial translation to control protein folding loads. Here, we combine pharmacological inhibitors of matrix-localized HSP90/TRAP1 or LON protease, which promote chaperonin expression, with global transcriptional and proteomic analysis to reveal an extensive and acute response of human cells to UPRmt. This response involved widespread induction of nuclear genes, including matrix-localized proteins involved in folding, pre-RNA processing and translation. Functional studies revealed rapid but reversible translation inhibition in mitochondria occurring concurrently with defects in pre-RNA processing due to transcriptional repression and LON-dependent turnover of the mitochondrial pre-RNA processing nuclease MRPP3. This study reveals that acute mitochondrial protein folding stress activates both increased chaperone availability within the matrix and reduced matrix-localized protein synthesis through translational inhibition, and provides a framework for further dissection of mammalian UPRmt. Overall design: triplicate experiment of 2 conditions (untreated, GTPP treatment)
Mitochondrial unfolded protein response controls matrix pre-RNA processing and translation.
No sample metadata fields
View SamplesThe effects of mutant p53 on TNFa stimulated PANC1 cells was tested.
Mutant p53 prolongs NF-κB activation and promotes chronic inflammation and inflammation-associated colorectal cancer.
Specimen part, Cell line
View SamplesWe have carried out whole-genome expression profiling of whole blood from obese subjects, defined as obese diet-sensitive and obese diet-resistant, and well matched lean individuals. The diet-sensitive or diet-resistant status refers to the different rates of weight loss observed in the two groups on a low-calorie diet regimen. Bioinformatic analysis revealed alterations in transcription in key pathways that are consistent with impaired capacity for fatty acid oxidation driven mitochondrial ATP synthesis in obese subjects who are resistant to weight loss.
Gene expression profiling in whole blood identifies distinct biological pathways associated with obesity.
Sex, Subject, Time
View SamplesRNAs were isolated from primary cultures after 24 hour treatment with IL-17A or IL-6 (10 ng/ml) in primary human TBE cells.
IL-17 markedly up-regulates beta-defensin-2 expression in human airway epithelium via JAK and NF-kappaB signaling pathways.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Chromatinized protein kinase C-θ directly regulates inducible genes in epithelial to mesenchymal transition and breast cancer stem cells.
Cell line, Treatment
View SamplesEpithelial to mesenchymal transition (EMT) is activated during cancer invasion and metastasis, enriches for cancer stem cells (CSCs), and contributes to therapeutic resistance and disease recurrence. The epithelial cell line MCF7, can be induced to undergo EMT with the induction of PKC by PMA. 5-10% of the resulting cells have a CSC phenotype. This study looks at the transcriptome of these cells and how it differs from cells with a non-CSC phenotype.
Chromatinized protein kinase C-θ directly regulates inducible genes in epithelial to mesenchymal transition and breast cancer stem cells.
Cell line, Treatment
View SamplesWe report a genome-wide survey of early responses of the mouse heart transcriptome to acute myocardial infarction (AMI). For three regions of the left ventricle (LV), namely ischemic/infarcted tissue (IF), the surviving LV free wall (FW) and the interventricular septum (IVS), 36,899 transcripts were assayed at six time points from 15 min to 48 h post-AMI in both AMI and sham surgery mice. For each transcript, temporal expression patterns were systematically compared between AMI and sham groups, which identified 515 AMI-responsive genes in IF tissue, 35 in the FW, 7 in the IVS, with three genes induced in all three regions. Using the literature, we assigned functional annotations to all 519 nonredundant AMI-induced genes and present two testable models for central signaling pathways induced early post-AMI. First, the early induction of 15 genes involved in assembly and activation of the activator protein-1 (AP-1) family of transcription factors implicates AP-1 as a dominant regulator of earliest post-ischemic molecular events. Second, dramatic increases in transcripts for arginase 1 (ARG1), the enzymes of polyamine biosynthesis and protein inhibitor of nitric oxide synthase (NOS) activity indicates that NO production may be regulated, in part, by inhibition of NOS and coordinate depletion of the NOS substrate, L-arginine. ARG1 was the single most highly induced transcript in the database (121-fold in IF region) and its induction in heart has not been previously reported.
Earliest changes in the left ventricular transcriptome postmyocardial infarction.
No sample metadata fields
View SamplesThe gastrointestinal tract is a major site of early HIV-1 replication and death of CD4+ T cells. As HIV-1 replicates in the gut, the protective epithelial barrier gets disrupted, leading to the entry of bacteria into the underlying tissue and the bloodstream, leading to inflammation and clinical complications even in HIV-1-infected patients taking antiviral drugs. Counteracting these pathogenic processes may require in-depth understanding of the molecular pathways that HIV-1 and microbes utilize to infect, functionally alter and/or kill CD4+ T cells. However, to date, the nature of the genes altered by relevant HIV-1 strains and bacteria in intestinal CD4+ T cells remains unclear.
The transcriptome of HIV-1 infected intestinal CD4+ T cells exposed to enteric bacteria.
Specimen part, Subject
View SamplesEarly innate lymphoid progenitors (EILP) have recently been identified in the mouse adult bone marrow as a multipotential progenitor population committed to ILC lineages, but their relationship with other described ILC progenitors is still unclear. In this study, we examine the progenitor-successor relationships between EILP, IL-7R+ common lymphoid progenitors (ALP), and ILC precursors (ILCp). Bioinformatic, phenotypical, functional, and genetic approaches collectively establish EILP as an intermediate progenitor between ALP and ILCp. Our work additionally provides new candidate regulators of ILC development and clearly defines the stage of requirement of transcription factors key for early ILC development. Overall design: transcriptional profiling of early ILC progenitors (EILP, ILCp), and common lymphoid progenitors (ALP) was performed by RNA sequencing
Development and differentiation of early innate lymphoid progenitors.
Specimen part, Cell line, Subject
View SamplesMutations in the gene encoding the transcription factor forkhead box P1 or FOXP1 occur in patients with neurodevelopmental disorders, including autism. However, the function of FOXP1 in the brain remains mostly unknown. Here, we identify the gene expression program regulated by FoxP1 in both human neural cells and mouse brain and demonstrate a conserved role for FOXP1 transcriptional regulation of autism and Fragile X Mental Retardation Protein (FMRP) mediated pathways. Coexpression networks support a role for Foxp1 in neuronal activity, and we show that Foxp1 is necessary for neuronal excitability. Using a Foxp1 mouse model, we observe defects in ultrasonic vocalizations. This behavioral phenotype is reflected at the genomic level as striatal Foxp1-regulated overlap with genes known to be important in rodent vocalizations. These data support an integral role for FOXP1 in regulating signaling pathways vulnerable in developmental disorders and the specific regulation of pathways important for vocal communication. Overall design: We carried out RNA-sequencing (RNA-seq) and ChIP-sequencing of human neural progenitors cells. We carried out RNA-sequencing (RNA-seq) of mouse striatal tissue, mouse hippocampal tissue and mouse cortical tissue. For the RNA-seq, four indipendent replicates were used for the neural progenitor cells and mouse tissues. For the Chip-seq, a single neural progenitor cell line was used.
FoxP1 orchestration of ASD-relevant signaling pathways in the striatum.
No sample metadata fields
View Samples