We obtained full transcriptome data from single cortical neurons after whole-cell patch-clamp recording (termed “Patch-seq”). By applying “Patch-seq” to cortical neurons, we reveal a close link between biophysical membrane properties and genes coding for neurotransmitter receptors and channels, including well-established and hitherto undescribed subtypes. Overall design: RNA sequencing was performed on a total of 83 individual cells
Integration of electrophysiological recordings with single-cell RNA-seq data identifies neuronal subtypes.
No sample metadata fields
View SamplesPromoter hypermethylation and transcriptional silencing is a common epigenetic mechanism of tumour suppressor inactivation in cancer, including malignant brain tumours.
Epigenetic genome-wide analysis identifies BEX1 as a candidate tumour suppressor gene in paediatric intracranial ependymoma.
Specimen part, Treatment
View SamplesLung development and function arises from the interactions between diverse cell types and lineages. Using single cell RNA-seq we characterize the cellular composition of the lung during development and identify vast dynamics in both the composition of cells and their molecular characteristics. Analyzing 818 ligand-receptor interaction pairs within and between cell lineages, we identify broadly interacting cells, including AT2, ILC and basophils. Using IL33-receptor knockout mice and in vitro experiments, we show that basophils establish a lung-specific function imprinted by IL-33 and GM-CSF, characterized by unique signaling of cytokines and growth factors important for stromal, epithelial and myeloid cell fates. Antibody depletion strategies, diphtheria toxin–mediated selective depletion of basophils, and co-culture studies, show that lung resident basophils are important regulators of alveolar macrophage development and function. Together, our study demonstrates how whole tissue cell interaction analysis on the single cell level can broaden our understanding of cellular networks in health and disease. Overall design: Transcriptional profiling of single cells from the different timepoints of lung development, generated from deep sequencing of tens of thousands of cells, sequenced in several batches on illumina Nextseq500 metadata.txt: Meta data file associating each single cell with its amplification batch and index sorting readouts
Lung Single-Cell Signaling Interaction Map Reveals Basophil Role in Macrophage Imprinting.
Specimen part, Cell line, Treatment, Subject
View SamplesDifferentiation of human skeletal stem cells (hMSC) into osteoblasts is regulated by a few well described transcription factors. Our study used clustering and gene expression data to identify a novel transcription factor. ZNF25, which we showed is involved in osteoblast differentiation.
Transcription factor ZNF25 is associated with osteoblast differentiation of human skeletal stem cells.
Cell line
View SamplesDirecting differentiation of human embryonic stem cells (hESC) into specific cell types using an easy and reproducible protocol is a perquisite for the clinical use of hESC in regenerative medicine protocols. Here, we report the generation of mesodermal cells with differentiation potential to myocytes, osteoblasts, chondrocytes and adipocytes. We demonstrate that during hESC differentiation as embryoid bodies (EB), inhibition of TGF-b/Activin/Nodal signaling using SB-431542 (SB) markedly up-regulated paraxial mesodermal markers (TBX6, TBX5), early myogenic transcriptional factors (Myf5, Pax7) as well as myocyte committed markers (NCAM, CD34, Desmin, MHC (fast), alpha-smooth muscle actin, Nkx2.5, cTNT). Establishing EB outgrowth cultures (SB-OG) in the presence of SB (1 uM) led to further enrichment of cells expressing markers for myocyte progenitor cell: CD34+ (33%), NCAM+ (CD56) (73%), PAX7 (25%) and mature myocyte proteins (MYOD1, tropomyocin, fast MHC an
Enhanced differentiation of human embryonic stem cells to mesenchymal progenitors by inhibition of TGF-beta/activin/nodal signaling using SB-431542.
Cell line
View SamplesDose-dependent ileal gene expression was examined following repeated exposure (every 4 days for 28 days) to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). These data were used to examine the effect of repeated TCDD exposure on gene expression in the intestinal epithelium of C57BL/6 male mice. Overall design: Three biological replicates for each dose (0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30) of TCDD and sesame oil vehicle
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-elicited effects on bile acid homeostasis: Alterations in biosynthesis, enterohepatic circulation, and microbial metabolism.
Sex, Cell line, Treatment, Subject
View SamplesThe molecular mechanism regulating phasic corticotropin-releasing hormone (CRH) release from parvocellular neurons (PVN) remains poorly understood. Here, we find a cohort of parvocellular cells interspersed with magnocellular PVN neurons expressing secretagogin. Single-cell transcriptome analysis combined with protein interactome profiling identifies secretagogin neurons as a distinct CRH-releasing neuron population reliant on secretagogin’s Ca2+ sensor properties and protein interactions with the vesicular traffic and exocytosis release machineries to liberate this key hypothalamic releasing hormone. Overall design: single cells from the PVN region juvenile (21-28 days) mice were dissected and subject to whole transcriptome analysis
A secretagogin locus of the mammalian hypothalamus controls stress hormone release.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Chromatinized protein kinase C-θ directly regulates inducible genes in epithelial to mesenchymal transition and breast cancer stem cells.
Cell line, Treatment
View SamplesEpithelial to mesenchymal transition (EMT) is activated during cancer invasion and metastasis, enriches for cancer stem cells (CSCs), and contributes to therapeutic resistance and disease recurrence. The epithelial cell line MCF7, can be induced to undergo EMT with the induction of PKC by PMA. 5-10% of the resulting cells have a CSC phenotype. This study looks at the transcriptome of these cells and how it differs from cells with a non-CSC phenotype.
Chromatinized protein kinase C-θ directly regulates inducible genes in epithelial to mesenchymal transition and breast cancer stem cells.
Cell line, Treatment
View Samples5069 transcriptomes of single oligodendrocyte cells from spinal cord, substantia nigra-ventral tegmental area, striatum, amygdala, hypothalamic nuclei, zona incerta, hippocampus, and somatosensory cortex of male and female mice between post-natal day 21 and 90. The study aimed at identifying diverse populations of oligodendrocytes, and revealing dynamics of oligodendrocyte maturation. Overall design: 5069 individual cells were sampled from CNS regions of mice of various strains as detailed in the protocols section
Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system.
Sex, Cell line, Treatment, Subject
View Samples