Negative-pressure wound therapy (NPWT) is widely used to improve skin wound healing and to accelerate wound bed preparation. Although NPWT has been extensively studied as a treatment for deep wounds, its effect on epithelialization of superficial dermal wounds remains unclear. To clarify the effect of NPWT on reepithelialization, we applied NPWT on split- thickness skin graft donor sites from the first postoperative day (POD) to the seventh POD. Six patients took part in the study and two samples were obtained from each. The first biopsy sample was taken at elective surgery before split-thickness skin grafting and the second one during reepithelialization on the seventh POD. In all 12 samples (eight from four NPWT patients, and four from two control patients) were collected for this study. From each sample, we carried out a comprehensive genome-wide microarray analysis. Data from patients receiving NPWT were compared groupwise with data from those not receiving NPWT.
Gene expression profiling of negative-pressure-treated skin graft donor site wounds.
Treatment, Subject
View SamplesIschemia, fibrosis, and remodeling lead to heart failure after severe myocardial infarction (MI). Myoblast sheet transplantation is a promising therapy to enhance cardiac function and induce therapeutic angiogenesis via a paracrine mechanism in this detrimental disease. We hypothesized that in a rat model of MI-induced chronic heart failure this therapy could further be improved by overexpression of the antiapoptotic, antifibrotic, and proangiogenic hepatocyte growth factor (HGF) in the myoblast sheets. We studied the ability of wild type (L6-WT) and human HGF-expressing (L6-HGF) L6 myoblast sheet-derived paracrine factors to stimulate cardiomyocyte, endothelial cell, or smooth muscle cell migration in culture. Further, we studied the autocrine effect of hHGF-expression on myoblast gene expression using microarray analysis. We induced MI in Wistar rats by left anterior descending coronary artery (LAD) ligation and allowed heart failure to develop for four weeks. Thereafter, we administered L6-WT (n=15) or L6-HGF (n=16) myoblast sheet therapy. Control rats (n=13) underwent LAD ligation and rethoracotomy without therapy and five rats underwent sham-operation in both surgeries. We evaluated cardiac function with echocardiography at 2 and 4 weeks after therapy administration. We analyzed cardiac angiogenesis and left ventricular architecture from histological sections 4 weeks after therapy. Paracrine mediators from L6-HGF myoblast sheets effectively induced migration of cardiac endothelial and smooth muscle cells but not cardiomyocytes. Microarray data revealed that hHGF-expression modulated myoblast gene expression. In vivo, L6-HGF sheet therapy effectively stimulated angiogenesis in the infarcted and non-infarcted areas. Both L6-WT and L6-HGF therapies enhanced cardiac function and inhibited remodeling in a similar fashion. In conclusion, L6-HGF therapy effectively induced angiogenesis in the chronically failing heart. Cardiac function, however, was not further enhanced by hHGF-expression.
hHGF overexpression in myoblast sheets enhances their angiogenic potential in rat chronic heart failure.
No sample metadata fields
View SamplesIn order to clarify the human response of re-epithelialization, we biopsied split-thickness skin graft donor site wounds immediately before and after harvesting, as well as during the healing process 3 and 7 days thereafter. Altogether 25 biopsies from 8 patients qualified for the study. All samples were analysed by genome-wide microarrays. Here we identified the genes associated with normal skin re-epithelialization on time-scale, and organized them by similarities according to their induction or suppression patterns during wound healing.
Human skin transcriptome during superficial cutaneous wound healing.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Chromatinized protein kinase C-θ directly regulates inducible genes in epithelial to mesenchymal transition and breast cancer stem cells.
Cell line, Treatment
View SamplesEpithelial to mesenchymal transition (EMT) is activated during cancer invasion and metastasis, enriches for cancer stem cells (CSCs), and contributes to therapeutic resistance and disease recurrence. The epithelial cell line MCF7, can be induced to undergo EMT with the induction of PKC by PMA. 5-10% of the resulting cells have a CSC phenotype. This study looks at the transcriptome of these cells and how it differs from cells with a non-CSC phenotype.
Chromatinized protein kinase C-θ directly regulates inducible genes in epithelial to mesenchymal transition and breast cancer stem cells.
Cell line, Treatment
View SamplesEarly innate lymphoid progenitors (EILP) have recently been identified in the mouse adult bone marrow as a multipotential progenitor population committed to ILC lineages, but their relationship with other described ILC progenitors is still unclear. In this study, we examine the progenitor-successor relationships between EILP, IL-7R+ common lymphoid progenitors (ALP), and ILC precursors (ILCp). Bioinformatic, phenotypical, functional, and genetic approaches collectively establish EILP as an intermediate progenitor between ALP and ILCp. Our work additionally provides new candidate regulators of ILC development and clearly defines the stage of requirement of transcription factors key for early ILC development. Overall design: transcriptional profiling of early ILC progenitors (EILP, ILCp), and common lymphoid progenitors (ALP) was performed by RNA sequencing
Development and differentiation of early innate lymphoid progenitors.
Specimen part, Cell line, Subject
View SamplesRNA editing is a mutational mechanism that specifically alters the nucleotide content in sets of transcripts while leaving their cognate genomic blueprint intact. Editing has been detected from bulk RNA-seq data in thousands of distinct transcripts, but apparent editing rates can vary widely (from under 1% to almost 100%). These observed editing rates could result from approximately equal rates of editing within each individual cell in the bulk sample, or alternatively, editing estimates from a population of cells could reflect an average of distinct, biologically significant editing signatures that vary substantially between individual cells in the population. To distinguish between these two possibilities we have constructed a hierarchical Bayesian model which quantifies the variance of editing rates at specific sites using RNA-seq data from both single cells and a cognate bulk sample consisting of ~ 106 cells. The model was applied to data from murine bone-marrow derived macrophages and dendritic cells, and predicted high variance for specific edited sites in both cell types tested. We then 1 validated these predictions using targeted amplification of specific editable transcripts from individual macrophages. Our data demonstrate substantial variance in editing signatures between single cells, supporting the notion that RNA editing generates diversity within cellular populations. Such editing-mediated RNA-level sequence diversity could contribute to the functional heterogeneity apparent in cells of the innate immune system. Overall design: 26 samples were subjected to RNA-seq: 24 single WT macrophages, and 2 bulk samples (Apobec1 WT and KO macrophages), consisting of 500,000-1 million cells each.
RNA editing generates cellular subsets with diverse sequence within populations.
Specimen part, Cell line, Subject
View SamplesMembrane estrogen receptor (ER) alpha stimulates AMP kinase to suppress SREBP1 processing and lipids in liver
Estrogen reduces lipid content in the liver exclusively from membrane receptor signaling.
Specimen part
View SamplesThe recently released Affymetrix Human Gene 1.0 ST array has two major differences compared with standard 3' based arrays: (1) it interrogates the entire mRNA transcript, and (2) it uses cDNA targets. To assess the impact of these differences on array performance, we performed series of comparative hybridizations between the Human Gene 1.0 ST and the Affymetrix HG-U133 Plus 2.0 and the Illumina HumanRef-8 BeadChip arrays. Additionally, both cRNA and cDNA targets were probed on the HG-U133 Plus 2.0 array. The results show that the overall reproducibility is best using the Gene 1.0 ST array. When looking only at the high intensity probes, the reproducibility of the Gene 1.0 ST array and the Illumina BeadChip array is equally good. Concordance of array results was assessed using different inter-platform mappings. The Gene 1.0 ST is most concordant with the HG-U133 array hybridized with cDNA targets, thus showing the impact of the target type. Agreements are better between platforms with designs which choose probes from the 3' end of the gene. Overall, the high degree of correspondence provides strong evidence for the reliability of the Gene 1.0 ST array.
Affymetrix Whole-Transcript Human Gene 1.0 ST array is highly concordant with standard 3' expression arrays.
No sample metadata fields
View SamplesWe recently reported that single-cell derived isogenic subclones of SKMEL5 cells have differential initial sensitivity to BRAF-inhibitors. In order to probe differences among these subclones, we selected three subclones with unique drug responses: progressing (SK-MEL-5 SC10), stationary (SK-MEL-5 SC07), and regressing (SK-MEL-5 SC01) and performed RNASeq. This study examines differentially expressed genes (DEGs) among the subclones to identify the molecular basis for initial differences in drug sensitivity. Overall design: Transcriptomics analysis between single-cell derived isogenic subclones of BRAF-mutated melanoma cell line, SK-MEL-5
A Nonquiescent "Idling" Population State in Drug-Treated, BRAF-Mutated Melanoma.
Specimen part, Cell line, Subject
View Samples