Plant meristems carry pools of continuously active stem cells, whose activity is controlled by developmental and environmental signals. After stem cell division, daughter cells that exit the stem cell domain acquire transit amplifying cell identity before they are incorporated into organs and differentiate. In this study, we used an integrated approach to elucidate the role of HECATE (HEC) genes in regulating developmental trajectories of shoot stem cells in Arabidopsis thaliana. Our work reveals that HEC function stabilizes cell fate in distinct zones of the shoot meristem thereby controlling the spatio-temporal dynamics of stem cell differentiation. Importantly, this activity is concomitant with the local modulation of cellular responses to cytokinin and auxin, two key phytohormones regulating cell behaviour. Mechanistically, we show that HEC factors directly modulate auxin signal transduction by physical interaction with MONOPTEROS (MP), a key regulator of auxin signalling, and thus interfere with the autocatalytic stabilization of auxin signalling. Overall design: p16:HEC1-linker-GR;inflorescence meristems; 14hours; mock1,mock2,mock3,dex1,dex2,dex3
Control of plant cell fate transitions by transcriptional and hormonal signals.
Age, Specimen part, Subject
View SamplesNucleosomal incorporation of specialized histone variants is an important mechanism to generate different functional chromatin states. Here we report the identification and characterization of two novel primate-specific histone H3 variants, H3.X and H3.Y. Their mRNAs are found in certain human cell lines, in addition to several normal and malignant human tissues. In keeping with their primate-specificity, H3.X and H3.Y are detected in different brain regions. Transgenic H3.X and H3.Y proteins are stably incorporated into chromatin in a similar fashion to the known H3 variants. Importantly, we demonstrate biochemically and by mass spectrometry that endogenous posttranslationally modified H3.Y protein exists in vivo, and that stress-stimuli, such as starvation and cellular density, increase the abundance of H3.Y-expressing cells. Global transcriptome analysis revealed that knock-down of H3.Y affects cell growth and leads to changes in the expression of many genes involved in cell cycle control. Thus, H3.Y is a novel histone variant involved in the regulation of cellular responses to outside stimuli.
Identification and characterization of two novel primate-specific histone H3 variants, H3.X and H3.Y.
Cell line
View SamplesNeuroblastoma, the most common extracranial pediatric solid tumor, is responsible for 15% of all childhood cancer deaths. Patients frequently present at diagnosis with metastatic disease, particularly to the bone marrow. Advances in therapy and understanding of the metastatic process have been limited due in part, to the lack of animal models harboring bone marrow disease. The widely employed transgenic model, the TH-MYCN mouse, exhibits limited metastasis to this site. Here we establish the first genetic immunocompetent mouse model for metastatic neuroblastoma with enhanced secondary tumors in the bone marrow. This model recapitulates two frequent alterations in metastatic neuroblasoma, over-expression of MYCN and loss of caspase-8 expression. In this model, the mouse caspase-8 gene was deleted in neural crest lineage cells by crossing a TH-Cre transgenic mouse with a caspase-8 conditional knockout mouse. This mouse was then crossed with the neuroblastoma prone TH-MYCN mouse. While over-expression of MYCN by itself rarely caused bone marrow metastasis (5% average incidence), combining MYCN overexpression and caspase-8 deletion significantly increased bone marrow metastasis (37% average incidence). Loss of caspase-8 expression did not alter the site, incidence, or latency of the primary tumors. However, secondary tumors were detected in the bone marrow of these mice as early as week 9-10. The mouse model described in this work is a valuable tool to enhance our understanding of metastatic neuroblastoma and treatment options and underscores the role of caspase-8 in neuroblastoma progression.
Th-MYCN mice with caspase-8 deficiency develop advanced neuroblastoma with bone marrow metastasis.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Histone Variant H2A.Z.2 Mediates Proliferation and Drug Sensitivity of Malignant Melanoma.
Cell line
View SamplesHere we report a novel role for H2A.Z.2 (H2AFV) as a mediator of cell proliferation and sensitivity to targeted therapies in malignant melanoma. While both H2A.Z.1 and H2A.Z.2 are highly expressed in metastatic melanoma and correlate with decreased patient survival, only H2A.Z.2 deficiency results in impaired cellular proliferation of melanoma cells, which occurs via a G1/S arrest. Integrated gene expression and ChIP-seq analyses revealed that H2A.Z.2 positively regulates E2F target genes, and that such genes acquire a distinct H2A.Z occupancy signature over the promoter and gene body in metastatic melanoma cells. We further identified the BET family member BRD2 as an H2A.Z-interacting protein in melanoma cells, and demonstrate that H2A.Z.2 silencing cooperates with BET inhibition to induce cell death.
Histone Variant H2A.Z.2 Mediates Proliferation and Drug Sensitivity of Malignant Melanoma.
Cell line
View SamplesHere we report a novel role for H2A.Z.2 (H2AFV) as a mediator of cell proliferation and sensitivity to targeted therapies in malignant melanoma. While both H2A.Z.1 and H2A.Z.2 are highly expressed in metastatic melanoma and correlate with decreased patient survival, only H2A.Z.2 deficiency results in impaired cellular proliferation of melanoma cells, which occurs via a G1/S arrest. Integrated gene expression and ChIP-seq analyses revealed that H2A.Z.2 positively regulates E2F target genes, and that such genes acquire a distinct H2A.Z occupancy signature over the promoter and gene body in metastatic melanoma cells. We further identified the BET family member BRD2 as an H2A.Z-interacting protein in melanoma cells, and demonstrate that H2A.Z.2 silencing cooperates with BET inhibition to induce cell death. Overall design: Expression levels for non tumorigenic (Melanocytes) and human melanoma cell line SKmel147, before and after JQ1 treatement
Histone Variant H2A.Z.2 Mediates Proliferation and Drug Sensitivity of Malignant Melanoma.
No sample metadata fields
View SamplesThe essential histone variant H2A.Z affects various DNA-based biological processes by so far not well understood mechanisms. Using a comprehensive label-free quantitative mass spectrometry-based approach we identified the human H2A.Z nucleosome interactome providing further insights into H2A.Z’s regulatory functions. Besides histone modification writer, eraser and reader complexes we identified PWWP2A as a novel H2A.Z-nucleosome binder. PWWP2A binds unprecedented strong to chromatin through a concerted multivalent binding mode. Two internal protein regions separately allow H2A.Z-specificity and nucleosome interaction, whereas the PWWP domain mediates direct DNA binding. PWWP2A is found at euchromatic regions where it preferable binds to the H2A.Z-nucleosome-containing transcriptional start sites of transcribed genes. Cellular depletion of PWWP2A results in impaired proliferation caused by a mitotic delay likely due to deregulation of involved target genes. According with the strong cellular phenotype, knockdown of frog PWWP2A leads to severe developmental cranial facial defects arising from neural crest cell differentiation and migration problems. Together, this study identifies PWWP2A as an H2A.Z-specific multivalent chromatin binder and provides a novel link between H2A.Z, chromosome segregation and organ development. Overall design: RNASeq of HeLa cells treated with control or PWWP siRNA
Multivalent binding of PWWP2A to H2A.Z regulates mitosis and neural crest differentiation.
No sample metadata fields
View SamplesThe hormone prolactin is implicated in the pathogenesis of breast cancer, and a subset of prolactin-induced gene expression is mediated by CypA activity.
Inhibition of the Activity of Cyclophilin A Impedes Prolactin Receptor-Mediated Signaling, Mammary Tumorigenesis, and Metastases.
Sex, Specimen part, Disease, Disease stage, Cell line
View SamplesImmunity to malaria can be acquired through natural exposure to Plasmodium falciparum (Pf), but only after years of repeated infections. Typically, this immunity is acquired by adolescence and confers protection against disease, but not Pf infection per se. Efforts to understand the mechanisms of this immunity are integral to the development of a vaccine that would mimic the induction of adult immunity in children. The current study applies transcriptomic analyses to a cohort from the rural village of Kalifabougou, Mali, where Pf transmission is intense and seasonal. Signatures that correlate with protection from malaria may yield new hypotheses regarding the biological mechanisms through which malaria immunity is induced by natural Pf infection. The resulting datasets will be of considerable value in the urgent worldwide effort to develop a malaria vaccine that could prevent more than a million deaths annually. Overall design: 108 samples; paired pre- and post-challenge for 54 individuals 198 samples; paired pre- and post-challenge for 99 individuals
Transcriptomic evidence for modulation of host inflammatory responses during febrile Plasmodium falciparum malaria.
No sample metadata fields
View SamplesThousands of long intergenic noncoding RNAs (lincRNAs) are encoded by the mammalian genome, which were reported to have multiple biological functions as transcriptional activators acting in cis 1 or trans 2, transcriptional repressors 3,4 or miRNAs decoys 5,6. However, the function of most lincRNAs has not yet been identified in vivo. Here, we demonstrate a role for linc-MYH, a novel long intergenic noncoding RNA, in adult fast-type myofibre specialization. Skeletal myofibre fast and slow phenotypes are established through differential expression of numerous fibre-specific genes7. We show linc-MYH and the fast MYH genes share a common enhancer located in the fast MYH genes locus and regulated by the Six1 homeoproteins. Muscle-specific Six1 mutant mice show increased expression of slow-type genes, and downregulation of linc-MYH and fast-type genes. linc-MYH function revealed by in vivo knockdown and wide transcriptomic analysis, is in fine to prevent expression of genes ensuring slow muscle contractile properties, and to increase fast-type muscle gene expression in fast-type myofibres. Thus, formation of efficient fast sarcomeric units and appropriate Ca++ cycling and excitation/contraction/relaxation coupling in fast- myofibres is achieved through the coordiante control of fast MYHs and linc-MYH expression by a Six bound enhancer.
Six homeoproteins and a Iinc-RNA at the fast MYH locus lock fast myofiber terminal phenotype.
Age, Specimen part
View Samples