Here we uncover antagonistic regulation of transcript levels in the germline of Caenorhabditis elegans hermaphrodites. The histone methyltransferase MES-4 marks genes expressed in the germline with methylated Lys36 on histone H3 (H3K36me) and promotes their transcription; MES-4 also represses genes normally expressed in somatic cells and genes on the X chromosomes. The DRM complex, which includes E2F/DP and Retinoblastoma homologs, affects germline gene expression and prevents excessive repression of X-chromosome genes. Using genome-scale analyses of germline tissue, we show that common germline-expressed genes are activated by MES-4 and repressed by DRM, and that MES-4 and DRM co-bind many germline-expressed genes. Reciprocally, MES-4 represses and DRM activates a set of autosomal soma-expressed genes and overall X-chromosome gene expression. Mutations in mes-4 or the DRM subunit lin-54 oppositely skew target transcript levels and cause sterility; a double mutant restores near wild-type transcript levels and germ cell development. Together, yin-yang regulation by MES-4 and DRM ensures transcript levels appropriate for germ cell function, elicits robust but not excessive dampening of X-chromosome-wide transcription, and may poise genes for future expression changes. Our study reveals that conserved transcriptional regulators implicated in development and cancer counteract each other to fine-tune transcript dosage.
Opposing activities of DRM and MES-4 tune gene expression and X-chromosome repression in Caenorhabditis elegans germ cells.
Sex
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Chromosome-biased binding and gene regulation by the Caenorhabditis elegans DRM complex.
Specimen part
View SamplesDRM is a conserved transcription factor complex that includes E2F/DP and pRB family proteins and plays important roles in development and cancer. Here we perform microarray expression profiling analysis of lin-54, a DNA-binding member of the DRM complex. To identify genes regulated by LIN-54 in soma and germline, we analyzed wild-type and lin-54 mutant C. elegans embryos and isolated germlines. We chose embryos because they consist primarily of somatic cells, at a developmental stage with both active cell divisions and dynamic developmental gene expression programs. Since lin-54 null animals are sterile, embryos were obtained from a strain carrying the partial loss-of-function allele lin-54(n2990). Germlines were dissected from lin-54(n3423) null adults that lack detectable transcript and protein. The results revealed conserved roles for DRM in regulating genes involved in cell division, development, and reproduction. We find LIN-54 promotes expression of reproduction genes in the germline, but prevents ectopic activation of germline-specific genes in embryonic soma. Strikingly, genomics and cytological analyses show that DRM binding, a DRM binding motif, and LIN-54-regulated genes are all autosome-enriched. One paradoxical exception occurs the germline, where DRM binds autosomes but genes down-regulated in DRM mutants are enriched on X chromosomes.
Chromosome-biased binding and gene regulation by the Caenorhabditis elegans DRM complex.
Specimen part
View SamplesActivating signaling mutations are common in acute leukemia with KMT2A (previously MLL) rearrangements. Herein, we show that co-expression of FLT3-N676K and KMT2A-MLLT3 in human CD34+ cord blood cells primarily cause acute myeloid leukemia (AML) and rarely acute lymphoblastic leukemia (ALL) in immunodeficient mice. By contrast, expression of KMT2A-MLLT3 alone cause ALL, double-positive leukemia (DPL, expressing both CD33 and CD19), or bilineal leukemia (BLL, comprised of distinct myeloid and lymphoid leukemia cells), and rarely AML. Further, AML could only be serially propagated with maintained immunophenotype in secondary recipients when cells co-expressed KMT2A-MLLT3 and FLT3-N676K. Consistent with the idea that activated signaling would allow myeloid cells to engraft and maintain their self-renewal capacity, in a secondary recipient, a de novo KRAS-G13D was identified in myeloid cells previously expressing only KMT2A-MLLT3. Gene expression profiling revealed that KMT2A-MLLT3 DPL had a highly similar gene expression profile to ALL, with both expressing key lymphoid transcription factors and ALL cell surface markers, in line with the DPL cells being ALL cells with aberrant expression of CD33. Taken together, our results highlight the need for constitutive active signaling mutations for driving myeloid leukemia in a human xenograft model of KMT2A-R acute leukemia. Overall design: mRNA sequencing of various immunophenotypic populations from KMT2A-MLLT3 xenograft leukemias with or without FLT3-N676K generated using Illumina NextSeq 500.
FLT3<sup>N676K</sup> drives acute myeloid leukemia in a xenograft model of KMT2A-MLLT3 leukemogenesis.
Specimen part, Subject
View SamplesActivating signaling mutations are common in acute leukemia with KMT2A (previously MLL) rearrangements (KMT2A-R). These mutations are often subclonal and their biological impact remains unclear. Using a retroviral acute myeloid mouse leukemia model, we demonstrate that FLT3ITD, FLT3N676K, and NRAS G12D accelerate KMT2A-MLLT3 leukemia onset. Subclonal FLT3N676K mutations also accelerate disease, possibly by providing stimulatory factors such as Mif. Acquired de novo mutations in Braf, Cbl, Kras, and Ptpn11 were identified in KMT2A-MLLT3 leukemia cells and favored clonal expansion. During clonal evolution, serial genetic changes at the KrasG12D locus was observed, consistent with a strong selective advantage of additional KrasG12D. KMT2A-MLLT3 leukemias with signaling mutations enforced Myc- and Myb transcriptional modules. Our results provide new insight into the biology of KMT2A-R leukemia with subclonal signaling mutations and highlights the importance of activated signaling as a contributing driver in this disease. Overall design: mRNA sequencing of KMT2A-MLLT3 leukemias with or without activating mutations generated using Illumina NextSeq 500.
De novo activating mutations drive clonal evolution and enhance clonal fitness in KMT2A-rearranged leukemia.
Specimen part, Cell line, Subject
View SamplesWe reported that NRP-1 expression on CD4+ T cells was probably induced by NRP-1 transfer from macrophages to T cells. In HER2+ BC, NRP-1 expressing TIIs correlated with better clinical outcomes. Overall design: Examination of monocytes and monocyte derived macrophages.
Downregulation of neuropilin-1 on macrophages modulates antibody-mediated tumoricidal activity.
No sample metadata fields
View Samples<Objective> To compare gene expression in labial salivary glands (LSG) of IgG4-related disease (IgG4-RD) with Sjgrens syndrome (SS).
DNA microarray analysis of labial salivary glands in IgG4-related disease: comparison with Sjögren's syndrome.
Sex, Specimen part
View SamplesProgesterone receptors (PRs) are critical context-dependent transcription factors required for normal uterine (PR-A) and mammary gland (PR-B) development. Progesterone is proliferative in the breast, where PR-target genes include paracrine factors that mediate mammary stem cell self-renewal. In the context of altered signal transduction that typifies breast tumorigenesis, dysregulated (i.e. hyper-phosphorylated) PRs likely contribute to tumor progression by promoting cancer cell pro-survival and proliferation. Notably, in breast cancer cells, progestin-bound PRs induce rapid MAPK activation leading to selective regulation of growth-promoting genes by phosphorylated PR species. Functional domains within PR that interact with c-Src and estrogen receptors (ER) have been identified as indirect routes to MAPK activation. Herein, we describe a common docking (CD) domain located within the PR-B N-terminus, a motif first described in MAPKs that facilitates direct interactions between MAPKs and MEK1 or MAPK-phosphatases (MKPs). Mutation of negatively-charged amino acids, previously determined to be critical for CD domain function in MAPKs, within PR-B (mCD PR) did not alter MEK-binding or progestin-induced rapid signaling (i.e. MAPK activation) and PR transcriptional activity as measured by PRE-luciferase (reporter) assays. Microarray gene-expression analysis revealed that endogenous genes regulated by wt PR, but not mCD PR, are involved in critical cellular pathways regulating growth, proliferation, survival, and cancer. mCD PR failed to undergo ligand-induced phosphorylation on Ser81, a ck2-dependent site required for progestin-regulation of select growth-promoting genes (BIRC3, HSD112, HbEGF). Progestin-induced PR Ser81 phosphorylation mapped to CD domain-dependent binding of PR-B to MKP3, but did not require phosphatase activity. Receptors containing either mutant CD domains (mCD PR) or point mutations of Ser81 (S79/81A PR) failed to upregulate STAT5 and Wnt1, key PR-target gene products that act as critical mediators of mammary stem cell expansion. Inhibition of JAK/STAT signaling blocked progestin-induced STAT5 and Wnt1 expression. ChIP assays demonstrated that wt, but not phospho-mutant (S79/81A), PR-B was co-recruited to a PRE-containing enhancer region of the Wnt1 gene along with MKP3, ck2 and STAT5. Our studies reveal a novel scaffolding action of MKP3 mediated by interaction with the PR CD domain and required for ck2-dependent PR Ser81 phosphorylation. Co-regulation of select target genes by phospho-Ser81 PR and phospho-STAT5 is likely a global mechanism required for the activation of growth promoting programs active during normal mammary gland development and relevant to mechanisms of breast cancer progression.
A Common Docking Domain in Progesterone Receptor-B links DUSP6 and CK2 signaling to proliferative transcriptional programs in breast cancer cells.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genome-Wide Chromatin Landscape Transitions Identify Novel Pathways in Early Commitment to Osteoblast Differentiation.
Specimen part, Cell line, Treatment, Time
View SamplesDHS enahncers identify novel pathways in OB differentiation
Genome-Wide Chromatin Landscape Transitions Identify Novel Pathways in Early Commitment to Osteoblast Differentiation.
Cell line, Treatment
View Samples