The concept of immune regulation/suppression has been well-established. With thymus-derived CD4 CD25 regulatory T (TR) cells, it became clear that a variety of additional peripherally induced TR cells play vital roles in protection from many harmful immune responses including intestinal inflammation. In the present study, we have analyzed in vivo-induced Ag-specific CD4 TR cells with respect to their molecular and functional phenotype. By comparative genomics we could show that these Ag-specific TR cells induced by chronic Ag stimulation in vivo clearly differ in their genetic program from naturally occurring thymus-derived CD4 CD25 TR cells. This distinct population of induced TR cells express neither CD25 nor the TR-associated transcription factor Foxp3. Strikingly, CD25 is not even up-regulated upon stimulation. Despite the lack in Foxp3 expression, these in vivo-induced CD25 TR cells are able to interfere with an Ag-specific CD8 T cell-mediated intestinal inflammation without significant increase in CD25 and Foxp3 expression. Thus, our results demonstrate that in vivo-induced Ag-specific TR cells represent a distinct population of Foxp3 CD25 TR cells with regulatory capacity both in vitro and in vivo.
Chronic antigen stimulation in vivo induces a distinct population of antigen-specific Foxp3 CD25 regulatory T cells.
Specimen part
View SamplesExpression analysis revealed that UBD is a down-stream element of Foxp3 in human activated regulatory CD4+ T cells (Treg).
UBD, a downstream element of FOXP3, allows the identification of LGALS3, a new marker of human regulatory T cells.
Specimen part
View SamplesCircuit neuroscience has made great progress by linking neuronal function to marker gene expression, allowing the specific investigation of otherwise indistinguishable neuronal ensembles. Here, we performed next generation sequencing on two functionally and genetically distinct interneuronal populations marked by the expression of protein kinase C d (PKCd) or somatostatin (SST) in the central amygdala (CEA) of mice, which are known to play distinct and sometimes opposing roles in emotion processing. Making their gene expression profile known will aid in forming hypotheses of how different neurotransmitters or psychoactive drugs could alter information processing in these neurons. Overall design: Unchallenged gene expression profile of two different neuronal populations in the central amygdala
Dorsal tegmental dopamine neurons gate associative learning of fear.
Sex, Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Altering TET dioxygenase levels within physiological range affects DNA methylation dynamics of HEK293 cells.
Specimen part, Cell line, Treatment
View SamplesWe compared TET1 and TET3 overexpressing cells to uninduced cells with endogenous levels of the respective transcript to determine global gene expression changes.
Altering TET dioxygenase levels within physiological range affects DNA methylation dynamics of HEK293 cells.
Specimen part, Treatment
View SamplesWe used microarrays to study the changes in the transcriptional profile upon Snail knockdown in murine lung adenocarcinomas
Snail mediates repression of the Dlk1-Dio3 locus in lung tumor-infiltrating immune cells.
Age, Specimen part
View SamplesWe used microarrays to study the changes in the transcriptional profile upon Snail overexpression in murine lung adenocarcinomas
Snail mediates repression of the Dlk1-Dio3 locus in lung tumor-infiltrating immune cells.
Age, Specimen part
View SamplesWe compared TET triple knockdown cells to control cells treated with non-targeting siRNAs to determine global gene expression changes.
Altering TET dioxygenase levels within physiological range affects DNA methylation dynamics of HEK293 cells.
Cell line, Treatment
View SamplesBackground: NK cells during chronic viral infection have been well studied over the last decade. We performed an unbiased next-generation RNA-sequencing approach to identify commonalities or differences of the effect of HIV, HCV and HBV viremia on NK cell transcriptomes. Methods: Using cell sorting, we obtained CD3-CD56+ NK cells from blood of 6 HIV, 11 HCV, and 32 HBV infected and untreated patients. Library preparation and sequencing were done using Illumina mRNA-Seq Sample Prep Kit and the HiSeq 2000, HiSeq2500 or NextSeq 500, and further analysis by an in-house analytic pipeline. Results: In NK cells from HIV, HCV and HBV patients, transcriptome analysis identified 272, 53, and 56 differentially expressed genes, respectively (fold change >1.5, q-value 0.2). Interferon stimulated genes were induced in NK cells from HIV/HCV patients, but not during HBV infection. HIV viremia downregulated ribosome assembly genes in NK cells. In HBV, viral load and ALT variation had little effect on genes related to NK effector function. Conclusion: We compare, for the first time, NK cell transcripts of viremic HIV, HCV and HBV patients. We clearly demonstrate distinctive NK cell gene signatures in 3 different populations, suggestive for a different degree of functional alterations of the NK cell compartment as compared to healthy individuals. Overall design: We analyzed NK cell transcripts collected from the blood of well-characterized chronic HBV patients (n=32), chronic HCV patients (n=8), and HIV patients (n=6). Differential gene expression analysis, global module analysis, and unsupervised clustering analysis were performed by employing RNA-sequencing on blood NK cell transcriptomes.
Persistent Replication of HIV, Hepatitis C Virus (HCV), and HBV Results in Distinct Gene Expression Profiles by Human NK Cells.
Sex, Specimen part, Disease, Subject
View SamplesPrimary pre-B acute lymphoblastic (ALL) cells do not proliferate long-term ex vivo without the presence of stromal support. We developed and use an ex vivo co-culture model, consisting of mouse leukemic pre-B Bcr/Abl-expressing ALL cells grown with mitotically inactivated mouse embryonic fibroblasts (MEFs). This system provides a generic type of environmentally-mediated protection to the ALL cells, because when the ALL cells are treated with a moderate dose of a therapeutic drug, drug-resistant ALL cells can be recovered after a 1-2 week period of culture. Some of the factors produced by stromal cells that provide protection to ALL cells have been identified. However, it is unclear if the presence of drug-treated ALL cells affects the stromal fibroblasts. The current study was initiated to examine this using expression profiling on the irradiated MEFs.
Expression of cassini, a murine gamma-satellite sequence conserved in evolution, is regulated in normal and malignant hematopoietic cells.
Specimen part
View Samples