The goal of this study was to define gene expression profiles in aortic tissue in response to three pro-atherogenic stimuli at two time points. We identified gene expression profiles induced by oral P.gingivalis (Pg), intranasal C. pneumoniae (Cp), and Western diet (WD) at acute (1 day after last infection, Pg, Cp, and control groups) and chronic (9 weeks after last infection, Pg, Cp, and control groups; WD for 9 weeks) time points in aortas of Apolipoprotein E (Apoe-/-) mice. 3 replicates per group were analyzed. RNA was analyzed using Mouse Gene 1.0 ST Array (Affymetrix, Santa Clara, CA).
Distinct gene signatures in aortic tissue from ApoE-/- mice exposed to pathogens or Western diet.
Specimen part, Treatment, Time
View SamplesThis study explores the impact of lifestyle and environment on gene expression through whole transcriptome profiling of peripheral blood samples in Fijian population (native Melanesians and Indians) living in the rural and urban areas.
Using blood informative transcripts in geographical genomics: impact of lifestyle on gene expression in fijians.
Sex, Age, Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Functional genomic analysis of the periodic transcriptome in the developing Drosophila wing.
Specimen part
View SamplesThe eukaryotic cell cycle, driven by both transcriptional and post-translational mechanisms, is the central molecular oscillator underlying tissue growth throughout animals. While genome-wide studies have investigated cell cycle-associated transcription in unicellular systems, global patterns of periodic transcription in multicellular tissues remain largely unexplored. Here we define the cell cycle-associated transcriptome of the developing Drosophila wing epithelium and compare it with that of cultured Drosophila S2 cells, revealing a core set of periodic genes as well as a surprising degree of context-specificity in periodic transcription. We further employ RNAi-mediated phenotypic profiling to define functional requirements for over 300 periodic genes, with a focus on those required for cell proliferation in vivo. Finally, we investigate the role of novel genes required for interkinetic nuclear migration. Combined, these findings provide a global perspective on cell cycle control in vivo, and highlight a critical need to understand the context-specific regulation of cell proliferation.
Functional genomic analysis of the periodic transcriptome in the developing Drosophila wing.
Specimen part
View SamplesThe eukaryotic cell cycle, driven by both transcriptional and post-translational mechanisms, is the central molecular oscillator underlying tissue growth throughout animals. While genome-wide studies have investigated cell cycle-associated transcription in unicellular systems, global patterns of periodic transcription in multicellular tissues remain largely unexplored. Here we define the cell cycle-associated transcriptome of the developing Drosophila wing epithelium and compare it with that of cultured Drosophila S2 cells, revealing a core set of periodic genes as well as a surprising degree of context-specificity in periodic transcription. We further employ RNAi-mediated phenotypic profiling to define functional requirements for over 300 periodic genes, with a focus on those required for cell proliferation in vivo. Finally, we investigate the role of novel genes required for interkinetic nuclear migration. Combined, these findings provide a global perspective on cell cycle control in vivo, and highlight a critical need to understand the context-specific regulation of cell proliferation. Two RNAi lines of CR32027, a non-coding RNA gene identified in this study, are examined for transcriptional changes relative to wt. Overall design: Transcriptional profiles of two RNAi knockdowns, CR32027-IR1 and CR32027-IR2, are examined in Drosophila wing pouch relative to OreR wt in triplicate by RNA Seq.
Functional genomic analysis of the periodic transcriptome in the developing Drosophila wing.
Subject
View SamplesThis study employed Affymetrix GeneChips to profile transcriptome of human pulmonary microvascular endothelial cells (HMVEC-L) treated with PBEFsiRNA to gain insight into transcriptional regulations of PBEF on the endothelial function. We isolated and labeled mRNAs from PBEF siRNA transfected HMVEC-L and hybridized them to Affymetrix GeneChip HG-U133 plus 2. Differentially expressed genes and canonical pathways were analyzed. Expressions of selected genes were validated by RT-PCR or western blotting. Several important themes are emerged from this study. First, PBEF induces the upregulation and downregulation of multiple genes in the endothelium. Expression of 373 genes were increased and 64 genes decreased by at least 1.3 fold in the PBEFsiRNA treated group compared to the control group of PBEFscRNA treated HMVEC-L. Second, the microarray results confirmed some previous reports of PBEF mediated gene expressions in some pathways but provided a more complete repertoire of molecules in those pathways. Third, most of affected canonical pathways or differentially expressed genes in PBEF siRNA treated HMVEC-L over their controls have not previously been reported to be PBEF-responsive. Our first transcriptome analysis of human pulmonary microvascular endothelial cells treated with PBEFsiRNA has provided important insights into the transcriptional regulation of gene expression in HMVEC-L cells by PBEF. Further in-depth follow-up analysis of the transcriptional regulation reported in this study may shed light on molecular mechanisms underlying PBEF mediated endothelial functions and dysfunctions in the physiology and the pathogenesis of inflammatory conditions, cancer, diabetes, coronary heart disease and provide new leads of therapeutic targets to those diseases.
Pleiotropic functions of pre-B-cell colony-enhancing factor (PBEF) revealed by transcriptomics of human pulmonary microvascular endothelial cells treated with PBEFsiRNA.
Specimen part
View SamplesSoybean is a rich source of protein and oil and a primary feedstock for biodiesel production. Previous research on soybean indicated that protein, oil and yield are controlled quantitatively in soybean seeds. However, genetic mechanisms controlling seed composition and yield in soybean remain unknown. We used Affymetrix Soybean GeneChips to identify genes that are differentially expressed between developing seeds of the Minsoy and Archer soybean varieties, which differ in seed weight, yield, protein content and oil content. Some of the differentially expressed genes identified in this study may play important roles in controlling these traits.
Identification of differentially expressed genes between developing seeds of different soybean cultivars.
Specimen part
View SamplesBackground: Personalized medicine is predicated on the notion that individual biochemical and genomic profiles are relatively constant in times of good health and to some extent predictive of disease or therapeutic response. We report a pilot study quantifying gene expression and methylation profile consistency over time, addressing the reasons for individual uniqueness, and its relation to N=1 phenotypes. Methods: Whole blood samples from 4 African American women, 4 Caucasian women, and 4 Caucasian men drawn from the Atlanta Center for Health Discovery and Well Being study at three successive 6-month intervals were profiled by RNASeq, miRNASeq, and Illumina Methyl-450 arrays. Standard regression approaches were used to evaluate the proportion of variance for each type of omic measure that is among individuals, and to quantify correlations among measures and with clinical attributes related to wellness. Results: Longitudinal omic profiles are in general highly consistent over time, with an average of 67% of the variance in transcript abundance, 42% of CpG methylation level (but 88% for the most differentiated CpG per gene), and 50% of miRNA abundance among individuals, which are all comparable to 74% of the variance among individuals for 74 clinical traits. One third of the variance can be attributed to differential blood cell type abundance, which is also fairly stable over time, and a lesser amount to eQTL effects, whereas seven conserved axes of covariance that capture diverse aspects of immune function explain over half of the variance. These axes also explain a considerable proportion of individually extreme transcript abundance, namely approximately 100 genes that are significantly up- or down-regulated in each person and are in some cases enriched for relevant gene activities that plausibly associate with clinical attributes. A similar fraction of genes have individually divergent methylation levels, but these do not overlap with the transcripts, and fewer than 20% of genes have significantly correlated methylation and gene expression. Conclusions: People express an “omic personality” consisting of peripheral blood transcriptional and epigenetic profiles that are constant over the course of a year and reflect various types of immune activity. Baseline genomic profiles can provide a window into the molecular basis of traits that might be useful for explaining medical conditions or guiding personalized health decisions. Overall design: Whole blood samples from 12 subjects drawn from the Atlanta Center for Health Discovery and Well Being study at three successive 6-month intervals were profiled by RNASeq, miRNASeq, and Illumina Methyl-450 arrays.
Omic personality: implications of stable transcript and methylation profiles for personalized medicine.
No sample metadata fields
View SamplesThe regional specificity and timing of gene activation following chemotherapy, and how this relates to subsequent mucositis development is currently unknown. The aim of the study was therefore to determine the early time course of gene expression changes along the gastrointestinal tract (GIT) of the DA rat following irinotecan treatment, so as to provide an insight into the genetic component of mucositis.
Gene expression analysis of multiple gastrointestinal regions reveals activation of common cell regulatory pathways following cytotoxic chemotherapy.
Sex, Age
View SamplesThroughout Metazoa, developmental processes are controlled by a surprisingly limited number of conserved signaling pathways. Precisely how these signaling cassettes were assembled in early animal evolution remains poorly understood, as do the molecular transitions that potentiated the acquisition of their myriad developmental functions. Here we analyze the molecular evolution of the proto-oncogene YAP/Yorkie, a key effector of the Hippo signaling pathway that controls organ size in both Drosophila and mammals. Based on heterologous functional analysis of evolutionarily distant Yap/Yorkie orthologs, we demonstrate that a structurally distinct interaction interface between Yap/Yorkie and its partner TEAD/Scalloped became fixed in the eumetazoan common ancestor. We then combine transcriptional profiling of tissues expressing phylogenetically diverse forms of Yap/Yorkie with ChIP-seq validation in order to identify a common downstream gene expression program underlying the control of tissue growth in Drosophila. Intriguingly, a subset of the newly-identified Yorkie target genes are also induced by Yap in mammalian tissues, thus revealing a conserved Yap-dependent gene expression signature likely to mediate organ size control throughout bilaterian animals. Combined, these experiments provide new mechanistic insights while revealing the ancient evolutionary history of Hippo signaling. We sought to define the downstream target genes of selected Yap variants by performing RNA sequencing analysis (RNA-seq) on total RNA isolated from GMR-Gal4>Yap eye discs. Overall design: Transcriptional profiles were generated in triplicate from eye imaginal disks with either endogenous Yki, or GMR-Gal4 over-expressed Yki, Trichoplax Yap, Monosiga Yap, or Monisiga Yap+TEAD domain, using deep sequencing via Illumina Hi Seq.
Molecular evolution of the Yap/Yorkie proto-oncogene and elucidation of its core transcriptional program.
Treatment, Subject
View Samples