This SuperSeries is composed of the SubSeries listed below.
Transcriptional signatures as a disease-specific and predictive inflammatory biomarker for type 1 diabetes.
No sample metadata fields
View SamplesThe complex milieu of inflammatory mediators associated with many diseases is often too dilute to directly measure in the periphery, necessitating development of more sensitive measurements suitable for mechanistic studies, earlier diagnosis, guiding selection of therapy, and monitoring interventions. Previously, we determined that plasma of recent-onset (RO) Type 1 diabetes (T1D) patients induce a proinflammatory transcriptional signature in fresh peripheral blood mononuclear cells (PBMC) relative to that of unrelated healthy controls (HC). Here, using an optimized cryopreserved PBMC-based protocol, we analyzed larger RO T1D and HC cohorts. In addition, we examined T1D progression by looking at longitudinal, pre-onset and longstanding T1D samples.
Transcriptional signatures as a disease-specific and predictive inflammatory biomarker for type 1 diabetes.
No sample metadata fields
View SamplesThe complex milieu of inflammatory mediators associated with many diseases is often too dilute to directly measure in the periphery, necessitating development of more sensitive measurements suitable for mechanistic studies, earlier diagnosis, guiding selection of therapy, and monitoring interventions. Previously, we determined that plasma of recent-onset (RO) Type 1 diabetes (T1D) patients induce a proinflammatory transcriptional signature in fresh peripheral blood mononuclear cells (PBMC) relative to that of unrelated healthy controls (HC). Here, using an optimized cryopreserved PBMC-based protocol, we compared the signature found between unrelated healthy controls and non-diabetic cystic fibrosis patients possessing Pseudomonas aeruginosa pulmonary tract infection.
Transcriptional signatures as a disease-specific and predictive inflammatory biomarker for type 1 diabetes.
No sample metadata fields
View SamplesThe complex milieu of inflammatory mediators associated with many diseases is often too dilute to directly measure in the periphery, necessitating development of more sensitive measurements suitable for mechanistic studies, earlier diagnosis, guiding selection of therapy, and monitoring interventions. Previously, we determined that plasma of recent-onset (RO) Type 1 diabetes (T1D) patients induce a proinflammatory transcriptional signature in fresh peripheral blood mononuclear cells (PBMC) relative to that of unrelated healthy controls (HC). Here, using an optimized cryopreserved PBMC-based protocol, we compared the signature found between unrelated healthy controls and patients with bacterial pneumonia.
Transcriptional signatures as a disease-specific and predictive inflammatory biomarker for type 1 diabetes.
No sample metadata fields
View SamplesThe complex milieu of inflammatory mediators associated with many diseases is often too dilute to directly measure in the periphery, necessitating development of more sensitive measurements suitable for mechanistic studies, earlier diagnosis, guiding selection of therapy, and monitoring interventions. Previously we determined that plasma of recent-onset (RO) Type 1 diabetes (T1D) patients induce a proinflammatory transcriptional signature in fresh peripheral blood mononuclear cells (PBMC) relative to that of unrelated healthy controls (HC). Here, using an optimized cryopreserved PBMC-based protocol, we compared the signature found in pre H1N1 samples to the signature associated with active H1N1 flu.
Transcriptional signatures as a disease-specific and predictive inflammatory biomarker for type 1 diabetes.
No sample metadata fields
View SamplesBipolar disorder (BPD) is a debilitating heritable psychiatric disorder. Contemporary models for the manic pole of BPD have primarily utilized either single locus transgenics or treatment with psychostimulants. Our lab recently characterized a mouse strain, termed Madison (MSN), which naturally displays a manic phenotype, exhibiting elevated locomotor activity, increased sexual behavior, and higher forced swimming relative to control strains. Lithium chloride and olanzapine treatments attenuate this phenotype. In this study, we replicated our locomotor activity experiment, showing that MSN mice display generationally-stable mania relative to their outbred ancestral strain, hsd:ICR (ICR). We then performed a gene expression microarray experiment to compare hippocampus of MSN and ICR mice. We found dysregulation of multiple transcripts whose human orthologs are associated with BPD and other psychiatric disorders including schizophrenia and ADHD, including: Epor, Smarca4, Cmklr1, Cat, Tac1, Npsr1, Fhit, and P2rx7. RT-qPCR confirmed dysregulation for all of seven transcripts tested. Using a network analysis, we found dysregulation of a gene system related to chromatin packaging, a result convergent with recent human findings on BPD. Using a novel genomic enrichment algorithm, we found enrichment in genome regions homologous to human loci implicated in BPD in replicated linkage studies including homologs of human cytobands 1p36, 3p14, 3q29, 6p21-22, 12q24, 16q24, and 17q25. Our findings suggest that MSN mice represent a polygenic model for the manic pole of BPD showing much of the genetic systems complexity of the corresponding human disorder. Further, the high degree of convergence between our findings and the human literature on BPD brings up novel questions about evolution by analogy in mammalian genomes.
A new mouse model for mania shares genetic correlates with human bipolar disorder.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Mechanisms of epigenetic and cell-type specific regulation of Hey target genes in ES cells and cardiomyocytes.
Specimen part
View SamplesWe used an in vitro cardiomyocyte differentiation system with inducible Hey1 or Hey2 expression to study target gene regulation in cardiomyocytes (CM) generated from murine embryonic stem cells (ESC). The effects of Hey1 and Hey2 are largely redundant, but cell type specific. The number of regulated genes is comparable between ESC and CM, but the total number of binding sites is much higher, especially in ESC, targeting mainly genes involved in transcriptional regulation and developmental processes. Repression by Hey generally correlates with the extent of Hey-binding to target promoters, subsequent Hdac recruitment and lower histone acetylation. Functionally, treatment with the Hdac inhibitor TSA abolished Hey target gene regulation. However, in CM the repressive effect of Hey-binding is lost for a subset of genes. These lack Hey-dependent histone deacetylation in CM and are enriched for binding sites of cardiac specific activators like Srf, Nkx2-5, and Gata4.
Mechanisms of epigenetic and cell-type specific regulation of Hey target genes in ES cells and cardiomyocytes.
No sample metadata fields
View SamplesWe used an in vitro cardiomyocyte differentiation system with inducible Hey1 or Hey2 expression to study target gene regulation in cardiomyocytes (CM) generated from murine embryonic stem cells (ESC). The effects of Hey1 and Hey2 are largely redundant, but cell type specific. The number of regulated genes is comparable between ESC and CM, but the total number of binding sites is much higher, especially in ESC, targeting mainly genes involved in transcriptional regulation and developmental processes. Repression by Hey generally correlates with the extent of Hey-binding to target promoters, subsequent Hdac recruitment and lower histone acetylation. Functionally, treatment with the Hdac inhibitor TSA abolished Hey target gene regulation. However, in CM the repressive effect of Hey-binding is lost for a subset of genes. These lack Hey-dependent histone deacetylation in CM and are enriched for binding sites of cardiac specific activators like Srf, Nkx2-5, and Gata4. Overall design: ES cells and cardiomyocytes with Hey1 or Hey2 overexpression were compared to control cells
Mechanisms of epigenetic and cell-type specific regulation of Hey target genes in ES cells and cardiomyocytes.
No sample metadata fields
View SamplesAs polyphenols are exerting a broad spectrum of metabolic effects, we hypothesize that feeding of GSGME might influence other metabolic pathways in the liver which could account for the positive effects of GSGME observed in cows during early lactation. In order to investigate this hypothesis, we used using a genome-wide transcript profiling technique to explore changes in the hepatic transcriptome of cows supplemented with GSGME during the transition period. Transcriptomic analysis of the liver revealed 207 differentially expressed transcripts (fold change > 1.3 or < -1.3, P < 0.05), from which 156 (155 mRNAs, 1 miRNA) were up- and 51 (43 mRNAs, 8 miRNAs) were down-regulated, between cows fed GSGME and control cows. Gene set enrichment analysis of the 155 up-regulated mRNAs showed that the most enriched gene ontology (GO) biological process terms were dealing with cell cycle regulation, such as M phase, cell cycle phase, mitotic cell phase and microtubule cytoskeleton and the most enriched KEGG database pathways were p53 signaling and cell cycle. Functional analysis of the 43 down-regulated mRNAs revealed that 13 genes (XBP1, HSPA5, HERPUD1, DNAJC5G, CALR, PDIA4, DNAJB11, PHLDA1, PPP1R3C, GADD45B, BAG3, HYOU1, MANF) are involved in ER stress-induced UPR. Moreover, several of the down-regulated mRNAs, like CXCL14 and CCL3L1L and the acute phase protein SAA4, play an important role in inflammatory processes. Accordingly, protein folding, response to unfolded protein, response to protein stimulus, unfolded protein binding, chemokine activity, chemokine receptor binding and heat shock protein binding were identified as one of the most enriched GO biological process and molecular function terms assigned to the down-regulated genes. In line with the transcriptomics data the plasma concentrations of the acute phase proteins SAA and haptoglobin were reduced in cows fed GSGME compared to control cows. Collectively, our findings from transcriptome analysis of down-regulated mRNAs and functional analysis of mRNAs targeted by the up-regulated mir-376c clearly indicate that GSGME is able to inhibit inflammatory processes and ER stress in the liver of dairy cows during early lactation. Moreover, our findings indicate that at least some of the GSGME effects on the hepatic transcriptome of dairy cows are mediated by miRNA-mRNA interactions.
Analysis of hepatic transcript profile and plasma lipid profile in early lactating dairy cows fed grape seed and grape marc meal extract.
Sex, Specimen part
View Samples