The genome of vertebrates contains endogenous retroviruses (ERVs) that have resulted from ancestral infections by exogenous retroviruses. ERVs are germline encoded, transmitted in a Mendelian fashion and account for about 8% of the human and 9.9% of the murine genome, respectively1, 2. By spontaneous activation and reintegration ERVs may cause insertional mutagenesis and thus participate in the process of malignant transformation or progression of tumor growth3, 4. However, if the innate immune system is able to recognize and control ERVs has not yet been elucidated. Here we report that, in vitro, nucleic-acid sensing TLRs on dendritic cells are activated by retroviral RNA and DNA from infected cells in vitro. Infection of TLR competent wild type mice with murine leukemia virus (MuLV)-like ERV isolates results in non-canonical gene upregulation, independent of type I IFN. In vivo, TLR3, -7 and -9 triple deficient mice (TLR379-/-) and mice with non functional TLR3, 7 and 9 signaling due to a mutation in UNC93B develop spontaneous ERV-induced viremia. More importantly, in TLR379-/- mice ERV-induced viremia correlates with acute T cell lymphoblastic leukemia (T-ALL). Multiple independent TLR379-/- T cell leukemia lines produce infectious MuLV of endogenous origin. These cell lines display de novo retroviral integration into the Nup214 or Notch1 gene locus leading to gene dysregulation that is reminiscent of aberrant Nup214 and Notch1 expression in human T-ALLs5. Overall, our results demonstrate that in addition to their role in innate immune defense against exogenous pathogens, TLR3,-7, and -9 may be essential for the control of endogenous retroviral mediated T-cell lymphomagenesis.
Nucleic acid-sensing Toll-like receptors are essential for the control of endogenous retrovirus viremia and ERV-induced tumors.
Specimen part
View SamplesAbsent in Melanoma 2 (AIM2) is a member of the HIN-200 family of hematopoietic, IFN-inducible nuclear proteins associated with infection defense and tumor pathology. Recently, AIM2 was found to act as a DNA sensor in innate immunity. In addition, a high frequency of AIM2-alterations was observed in microsatellite unstable tumors. To elucidate AIM2 function in colorectal tumors, we here addressed AIM2-responsive genes by microarray. Among genes up-regulated by AIM2, there were a number of interferon-stimulated genes (ISGs: IFIT1, IFIT2, IFIT3, IFI6, IRF7, ISG15, HLA-DRA, HLA-DRB, TLR3 and CIITA) as well as genes involved in intercellular adhesion and matrix remodeling. Expression of ISGs correlated with expression of AIM2 in ten different IFN- treated colorectal cancer cell lines. Moreover, knock-down of AIM2 resulted in reduced expression of HLA-DRA, HLA-DRB, and CIITA in IFN- treated cells. IFN- independent induction of HLA-DR genes and their encoded proteins was also demonstrated upon transient induction of AIM2. STAT-signaling was not involved in IFN- independent induction of ISGs, arguing against participation of cytokines released in an autocrine manner. Our data indicate that AIM2 mediates IFN- dependent and independent induction of several Interferon stimulated genes (ISGs) including genes encoding the MHC II antigens HLA-DR and .
Absent in Melanoma 2 (AIM2) is an important mediator of interferon-dependent and -independent HLA-DRA and HLA-DRB gene expression in colorectal cancers.
Cell line
View SamplesSo far, the majority of research on piRNAs was carried out in popular model organisms such as fruit fly and mouse, which however do not closely reflect human PIWI biology. Thus, we high-throughput sequenced and computationally analyzed piRNAs expressed in the adult testis of the pig owing to its full set of mammalian Piwi paralogs, availability for repeat experiments and the existence of elementary data from previous studies on the porcine PIWI/piRNA system. We provide an exhaustive characterization of porcine piRNAs and genomic piRNA clusters. In addition, we reveal that a considerable proportion of piRNAs matches protein coding genes, exhibiting characteristics that point to a biogenesis within the post-transcriptional silencing mechanism of the PIWI/piRNA pathway, commonly referred to as ping pong cycle. We further show that the majority of identified piRNA clusters spans exonic sequences of protein-coding genes or pseudogenes, which indicates the existence of different mechanisms for the generation of piRNAs directed against mRNA. Our data provides evidence that spliced mRNAs, derived from such loci, are not only targeted by piRNAs but are also subject to ping pong cycle processing. Finally, we demonstrate that homologous genes are targeted by piRNAs in pig, mouse and human. Altogether, this strongly suggests a role for mammalian piRNA clusters in gene regulation alongside of TE repression.
piRNAs from Pig Testis Provide Evidence for a Conserved Role of the Piwi Pathway in Post-Transcriptional Gene Regulation in Mammals.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The AIM2-like Receptors Are Dispensable for the Interferon Response to Intracellular DNA.
Treatment, Time
View SamplesAnalysis of ALR-deficient cells indicates that ALRs are not required for the IFN response to intracellular DNA. To explore whether AIM2-like receptors activated another innate signaling pathway upon
The AIM2-like Receptors Are Dispensable for the Interferon Response to Intracellular DNA.
Treatment, Time
View SamplesMicroarray analysis and quantitative real-time PCR revealed that TB40E infection of DCs led to changes of the gene expression pattern. A variety of pro-inflammatory cytokines and chemokines (CXCL10, CXCL11, CCL5), TLR3 and genes whose products function downstream of the TLR3 signalling pathway (e.g. IFN-, IFN-) were significantly upregulated.
Toll-like receptor 3 has no critical role during early immune response of human monocyte-derived dendritic cells after infection with the human cytomegalovirus strain TB40E.
Specimen part
View SamplesALS is a uniformly fatal neurodegenerative disease in which motor neurons in the spinal cord and brain stem are selectively lost. Individual motor - groups of motor neurons innervating single muscles - show widely varying degrees of disease resistance: in the final stages of ALS, nearly all voluntary movement is lost but eye movement and eliminative and sexual functions remain relatively unimpaired. These functions are controlled by motor neurons of the oculomotor (III), trochlear (IV) and abducens (VI) nuclei in the midbrain and brainstem, and by Onufs nucleus in the lumbosacral spinal cord, respectively. Correspondingly, in ALS autopsies the oculomotor and Onufs nuclei are almost completely preserved. We used microarray profiling of isolated wildtype mouse motor neurons to identify genes whose expression was characteristic of both oculomotor and Onufs nuclei but not of vulnerable lumbar spinal neurons, or vice versa.
Neuronal matrix metalloproteinase-9 is a determinant of selective neurodegeneration.
Sex, Specimen part
View SamplesUpstream of N-ras (UNR) is a conserved RNA-binding protein that regulates mRNA translation and stability by binding to sites generally located in untranslated regions (UTRs). In Drosophila, sex-specific binding of UNR to msl2 mRNA and the non-coding RNA roX plays key roles in the control of X-chromosome dosage compensation in both sexes. In order to investigate broader sex-specific functions of UNR, we have identified its RNA targets in adult male and female flies by high-throughput RNA binding and transcriptome analysis. Here we show that UNR binds to a large set of protein-coding transcripts and to a smaller set of non-coding RNAs in a sex-specific fashion. Overall design: Two replicates of UNR IP were performed in D.melanogaster adult males and females, and enrichment in either sex was compared with IgG IP as control. To correlate sex-specific UNR binding with sex-specific transcription and splicing we performed RNA-Seq experiments in males and females.
Widespread generation of alternative UTRs contributes to sex-specific RNA binding by UNR.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Glioblastoma stem-like cells give rise to tumour endothelium.
Sex, Age, Specimen part
View SamplesThe adult heart contains macrophages derived from both embryonic and adult bone-marrow derived precursors. Such population diversity raises the possibility that macrophages of distinct origins occupy differing biological roles or anatomical niches within the heart. Here, we provide evidence for the latter, showing that bone-marrow derived macrophages express the chemokine receptor Ccr2 and preferentially localise to the aortic root of the heart. This targeted migration occurs via a Ccr2-Ccl7 axis, whereby Ccl7-producing cardiac fibroblasts populating the aortic root, recruit Ccr2pos macrophages. Notably, the selective recruitment of Ccr2pos macrophages renders the aortic root sensitive to inflammatory disease. In a mouse model of Kawasaki Disease, acute inflammation drives a numerical increase in bone-marrow derived Ccr2pos macrophages, which accumulate at the aorta and trigger local inflammation at this site. We propose that cardiac fibroblasts recruit Ccr2pos macrophages to the aortic root, and that this process targets inflammatory disease to the heart's major vessels. Overall design: Mice were either naïve or challenged with a Candida albicans water-soluble complex (CAWS) to induce a mouse model of Kawasaki Disease. Cardiac macrophages were extracted from three independent pools of naive mice and three independent pools of CAWS challenged mice. Splenic monocytes were extracted from three independent pools of naive mice. In each case, cardiac macrophages were divided into three subpopulations (R1, R2 and R3) based on Ccr2 and MHC-II expression.
The Selective Expansion and Targeted Accumulation of Bone Marrow-Derived Macrophages Drive Cardiac Vasculitis.
Specimen part, Treatment, Subject
View Samples