Diabetic foot ulcers (DFU) are one of the major complications in type II diabetes patients and can result in amputation and morbidity. Although multiple approaches are used clinically to help wound closure, many patients still lack adequate treatment. Here we show that IL-20 subfamily cytokines are upregulated during normal wound healing. While there is a redundant role for each individual cytokine in this subfamily in wound healing, mice deficient in IL-22R, the common receptor chain for IL-20, IL-22, and IL-24, display a significant delay in wound healing. Furthermore, IL-20, IL-22 and IL-24 are all able to promote wound healing in type II diabetic db/db mice. When compared to other growth factors such as VEGF and PDGF that accelerate wound healing in this model, IL-22 uniquely induced genes involved in reepithelialization, tissue remodeling and innate host defense mechanisms from wounded skin. Interestingly, IL-22 treatment showed superior efficacy compared to PDGF or VEGF in an infectious diabetic wound model. Taken together, our data suggest that IL-20 subfamily cytokines, particularly IL-20, IL-22, and IL-24, might provide therapeutic benefit for patients with DFU.
IL-22R Ligands IL-20, IL-22, and IL-24 Promote Wound Healing in Diabetic db/db Mice.
Treatment, Time
View SamplesHSF1 is a major transcriptional regulator of heat shock responses. Many cells activate HSF1 in response to heat shock temperatures (>42oC) and other cellular stress causing agents. Unlike other cell types, T cells activate HSF1 in response to T cell activation or when exposed to febrile (40oC) temperatures, suggesting a role for HSF1 beyond the heat-shock response.
Heat shock transcription factor 1 is activated as a consequence of lymphocyte activation and regulates a major proteostasis network in T cells critical for cell division during stress.
Specimen part, Treatment
View SamplesLocated in the perisinusoidal space of Disse, hepatic stellate cells (HSCs) communicate with all other liver cell types by physical association and / or by producing cytokines and chemokines. In liver disease and folllowing liver transplantation, elevated levels of endotoxin (bacterial lipopolysaccharide: LPS) stimulate HSCs to produce increased amounts of cytokines and chemokines. Transcriptomic analysis of cultured HSCs stimulated with LPS yields a survey of expression changes which potentially modulate the hepatic inflammatory and immune responses.
The transcriptomic response of rat hepatic stellate cells to endotoxin: implications for hepatic inflammation and immune regulation.
Sex, Specimen part
View SamplesDuring sexual dimorphism, the loss of one entire X chromosome in Drosophila males is achieved largely via a broad genome-wide aneuploid effect. Exploring how MSL proteins and two large non coding RNAs (roX1 and roX2) modulate trans-acting aneuploid effect for equality to females, we employ a system biology approach (microarray) to investigate the global aneuploid effect of maleless(mle) mutation by disrupting MSL binding. A large number of the genes (144) that encode a broad spectrum of cellular transport proteins and transcription factors are located in the autosomes of Drosophila melanogaster.
Drosophila maleless gene counteracts X global aneuploid effects in males.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Binding loci of RelA-containing nuclear factor-kappaB dimers in promoter regions of PHM1-31 myometrial smooth muscle cells.
Specimen part
View SamplesA study to define the binding loci of RelA-containing NF-kappaB dimers and subsequent correlation with gene expression in a human myometrial smooth muscle cell line after exposure to TNF.
Binding loci of RelA-containing nuclear factor-kappaB dimers in promoter regions of PHM1-31 myometrial smooth muscle cells.
Specimen part
View SamplesCellular plasticity confers cancer cells the ability to adapt to micro-environmental changes, a fundamental requirement for tumour progression and metastasis. The epithelial to mesenchymal transition (EMT) is a transcriptional programme associated with increased cell motility and stemness. Beside EMT, the mesenchymal to amoeboid transition (MAT) has been described during tumour progression but, to date, little is known about its transcriptional control and involvement in stemness. The aim of this study is to investigate (i) the transcriptional profile associated with the MAT programme and (ii) to study whether MAT acquisition in melanoma cancer cells correlate with clonogenic potential to promote tumor growth. Our results demonstrate that MAT programme in melanoma is characterised by increased stemness and clonogenic features of cancer cells, thus sustaining tumour progression. Furthermore, these data suggest that stemness is not an exclusive feature of cells undergoing EMT, but more generally is associated with an increase in cellular plasticity of cancer cells.
Mesenchymal to amoeboid transition is associated with stem-like features of melanoma cells.
Cell line, Treatment
View SamplesHepatic fibrosis is the common end stage to a variety of chronic liver injuries and is characterized by an excessive deposition of extracellular matrix (ECM), which disrupts the liver architecture and impairs liver function. The fibrous lesions are produced by myofibroblasts, which differentiate from hepatic stellate cells (HSC). The myofibroblasts transcriptional networks remain poorly characterized. Previous studies have shown that the Forkhead box F1 (FOXF1) transcription factor is expressed in HSCs and stimulates their activation during acute liver injury; however, the role of FOXF1 in the progression of hepatic fibrosis is unknown. In the present study, we generated aSMACreER;Foxf1fl/fl mice to conditionally inactivate Foxf1 in myofibroblasts during carbon tetrachloride-mediated liver fibrosis. Foxf1 deletion increased collagen depositions and disrupted liver architecture. Timp2 expression was significantly increased in Foxf1-deficient mice while MMP9 activity was reduced. RNA sequencing of purified liver myofibroblasts demonstrated that FOXF1 inhibits expression of pro-fibrotic genes, Col1a2, Col5a2, and Mmp2 in fibrotic livers and binds to active repressors located in promotors and introns of these genes. Overexpression of FOXF1 inhibits Col1a2, Col5a2, and MMP2 in primary murine HSCs in vitro. Altogether, FOXF1 prevents aberrant ECM depositions during hepatic fibrosis by repressing pro-fibrotic gene transcription in myofibroblasts and HSCs. Overall design: RNAseq on isolated hepatic stromal cells from Foxf1 fl/fl and aSMACreER;Foxf1 fl/fl mice after 5 weeks of carbon tetrachloride-induced liver injury.
The Forkhead box F1 transcription factor inhibits collagen deposition and accumulation of myofibroblasts during liver fibrosis.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrated gene and miRNA expression analysis of prostate cancer associated fibroblasts supports a prominent role for interleukin-6 in fibroblast activation.
Specimen part, Treatment
View SamplesTumor microenvironment coevolves with and simultaneously sustains cancer progression. Reactive fibroblasts found in prostate cancer (PCa), known as cancer associated fibroblasts (CAF), have been indeed shown to fuel tumor development and metastasis by mutually interacting with PCa cells. Little is known about the molecular mechanisms that lead to activation of CAFs from tissue-resident fibroblasts, circulating marrow-derived fibroblast progenitors or mesenchymal stem cells. Through integrated gene and microRNA expression profiling, here we showed that transcriptome of CAFs isolated from prostate tumors strictly resembles that of normal fibroblasts stimulated in vitro with interleukin-6 (IL6), thus confirming the capability of the cytokine to promote acquisition of an activated and cancer-promoting phenotype, and, for the first time, proving that IL6 is able per se to induce all the complex transcriptional changes characteristic of patient-derived CAFs. Comparison with publicly available datasets, however, suggested that prostate CAFs may be alternatively characterized by IL6 and TGF-related signatures, indicating that either signal, depending on the context, tumor stage and etiology, may concur to fibroblast activation. Our analyses also highlighted pathways relevant for induction of reactive stroma, including genes the role of which in fibroblast activation is still to be explored. In addition, we revealed a role for muscle-specific miR-133b as a soluble factor secreted by activated fibroblasts to support paracrine activation of non-activated fibroblasts or promote tumor progression. Overall, in this study we provided insights on the molecular mechanisms driving fibroblast activation in prostate cancer, thus contributing to identify novel hits for the development of therapeutic strategies targeting the crucial interplay between tumor cells and their microenvironment. Tumor microenvironment coevolves with and simultaneously sustains cancer progression. Reactive fibroblasts found in prostate cancer (PCa), known as cancer associated fibroblasts (CAF), have been indeed shown to fuel tumor development and metastasis by mutually interacting with PCa cells. Little is known about the molecular mechanisms that lead to activation of CAFs from tissue-resident fibroblasts, circulating marrow-derived fibroblast progenitors or mesenchymal stem cells. Through integrated gene and microRNA expression profiling, here we showed that transcriptome of CAFs isolated from prostate tumors strictly resembles that of normal fibroblasts stimulated in vitro with interleukin-6 (IL6), thus confirming the capability of the cytokine to promote acquisition of an activated and cancer-promoting phenotype, and, for the first time, proving that IL6 is able per se to induce all the complex transcriptional changes characteristic of patient-derived CAFs. Comparison with publicly available datasets, however, suggested that prostate CAFs may be alternatively characterized by IL6 and TGF-related signatures, indicating that either signal, depending on the context, tumor stage and etiology, may concur to fibroblast activation. Our analyses also highlighted pathways relevant for induction of reactive stroma, including genes the role of which in fibroblast activation is still to be explored. In addition, we revealed a role for muscle-specific miR-133b as a soluble factor secreted by activated fibroblasts to support paracrine activation of non-activated fibroblasts or promote tumor progression. Overall, in this study we provided insights on the molecular mechanisms driving fibroblast activation in prostate cancer, thus contributing to identify novel hits for the development of therapeutic strategies targeting the crucial interplay between tumor cells and their microenvironment. Tumor microenvironment coevolves with and simultaneously sustains cancer progression. Reactive fibroblasts found in prostate cancer (PCa), known as cancer associated fibroblasts (CAF), have been indeed shown to fuel tumor development and metastasis by mutually interacting with PCa cells. Little is known about the molecular mechanisms that lead to activation of CAFs from tissue-resident fibroblasts, circulating marrow-derived fibroblast progenitors or mesenchymal stem cells. Through integrated gene and microRNA expression profiling, here we showed that transcriptome of CAFs isolated from prostate tumors strictly resembles that of normal fibroblasts stimulated in vitro with interleukin-6 (IL6), thus confirming the capability of the cytokine to promote acquisition of an activated and cancer-promoting phenotype, and, for the first time, proving that IL6 is able per se to induce all the complex transcriptional changes characteristic of patient-derived CAFs. Comparison with publicly available datasets, however, suggested that prostate CAFs may be alternatively characterized by IL6 and TGF-related signatures, indicating that either signal, depending on the context, tumor stage and etiology, may concur to fibroblast activation. Our analyses also highlighted pathways relevant for induction of reactive stroma, including genes the role of which in fibroblast activation is still to be explored. In addition, we revealed a role for muscle-specific miR-133b as a soluble factor secreted by activated fibroblasts to support paracrine activation of non-activated fibroblasts or promote tumor progression. Overall, in this study we provided insights on the molecular mechanisms driving fibroblast activation in prostate cancer, thus contributing to identify novel hits for the development of therapeutic strategies targeting the crucial interplay between tumor cells and their microenvironment.
Integrated gene and miRNA expression analysis of prostate cancer associated fibroblasts supports a prominent role for interleukin-6 in fibroblast activation.
Specimen part, Treatment
View Samples