We describe a method for isolating RNA suitable for high-throughput RNA sequencing (RNA-seq) from small numbers of fluorescently labeled cells isolated from live zebrafish (Danio rerio) embryos without using costly, commercially available columns. This method ensures high cell viability after dissociation and suspension of cells and gives a very high yield of intact RNA. We demonstrate the utility of our new protocol by isolating RNA from fluorescence activated cell sorted (FAC sorted) pineal complex neurons in wild-type and tbx2b knockdown embryos at 24 hours post fertilization. Tbx2b is a transcription factor required for pineal complex formation. We describe a bioinformatics pipeline used to analyze differential expression following high-throughput sequencing and demonstrate the validity of our results using in situ hybridization of differentially expressed transcripts. This protocol brings modern transcriptome analysis to the study of small cell populations in zebrafish. Overall design: Differential expression analysis of mRNA levels in a single time-point (24 hpf) between wild-type and Tbx2b deficient FAC sorted pineal complex cells
Identification of differentially expressed genes during development of the zebrafish pineal complex using RNA sequencing.
No sample metadata fields
View SamplesBackground: First- and third-generation retinoids are the main treatment in acne. Even though efficacious, they lack full selectivity for RAR expressed in the epidermis and infundibulum. Objectives: To characterize the in vitro metabolism and the pharmacology of the novel retinoid trifarotene. Methods: In vitro assays determined efficacy, potency and selectivity on RARs, as well as the activity on the expression of retinoid target genes in human keratinocytes and ex vivo cultured skin. In vivo studies investigated topical comedolytic, anti-inflammatory and depigmenting properties. The trifarotene-induced gene expression profile was investigated in non-lesional skin of acne patients and compared to ex vivo and in vivo models. Finally, the metabolic stability in human keratinocytes and hepatic microsomes was established. Results: Trifarotene is a selective RAR agonist with >20-fold selectivity over RAR and RAR. Trifarotene is active and stable in keratinocytes but rapidly metabolized by human hepatic microsomes, predicting improved safety. In vivo, trifarotene 0.01% applied topically is highly comedolytic and has antiinflammatory and antipigmenting properties. Gene expression studies indicated potent activation of known retinoid-modulated processes (epidermal differentiation, proliferation, stress response, RA metabolism) and novel pathways (proteolysis, transport/skin hydration, cell adhesion) in ex vivo and in vivo models, as well as in human skin after four weeks of topical application of trifarotene 0.005% cream. Conclusion: Based on its RAR selectivity, rapid degradation in human hepatic microsomes and pharmacological properties including potent modulation of epidermal processes, topical treatment with trifarotene is expected to provide strong efficacy combined with a favourable safety profile in acne and ichthyotic disorders.
Nonclinical and human pharmacology of the potent and selective topical retinoic acid receptor-γ agonist trifarotene.
Specimen part
View Samplesp53 inactivation occurs only rarely in neuroblastoma, although miR-34, a transcriptional target of p53, is often deleted in neuroblastoma, suggesting another way in which p53 signaling might be impaired. In this study we show that miR-34 directly targets and downregulates the Polycomb Repressive Complex 2 (PRC2) and its associated histone demethylase, JARID1A, in a p53-dependent manner,
KDM5A Regulates a Translational Program that Controls p53 Protein Expression.
Cell line
View SamplesArsenic contamination of drinking water occurs globally and is associated with numerous diseases including skin, lung, and bladder cancers, and cardiovascular disease. The mechanisms behind arsenic's effects remain unclear, but recent research indicates that aresnic acts along sex-specific lines and may be an endocrine disruptor. The objective of this study was to evaluate the nature of gene expression chagnes among males and females exposed to arsenic contaminated water in Bangladesh at high and low dose exposures.The median wAs concentration for the low exposure group was 103 g/L for males and 117 g/L for females (range 50200 g/L). For the high exposure group, the median wAs concentration was 355 g /L for males (range 250-500 g /L) and 434 g/L for females (range 2321000 g /L). The PBMCs of males with high exposure compared to those with low exposure there were 534 differentially expressed genes (p <0.05); and for females with high exposure relative to low exposure there were 645 differentially expressed genes (p <0.05) in PBMCs of females.
Sex-specific patterns and deregulation of endocrine pathways in the gene expression profiles of Bangladeshi adults exposed to arsenic contaminated drinking water.
Sex, Specimen part
View SamplesThe histone variant macroH2A1 and the poly(ADP-ribose) polymerase PARP-1 both regulate gene transcription by modulating chromatin structure and function. Of the two macroH2A1 splice variants, macroH2A1.1 and macroH2A1.2, the former is often suppressed in cancer and has the unique ability to interact with poly(ADP-ribose). Using ChIP-seq in primary lung fibroblasts, we demonstrate that macroH2A1 is incorporated into either of two spatially and functionally distinct types of chromatin; the first is marked by H3 K27 trimethylation, while the second contains a set of nine histone acetylations. MacroH2A1-regulated genes are involved in cancer progression are specifically found in macroH2A1-containing acetylated chromatin. Through the recruitment of PARP-1, macroH2A1.1 promotes the acetylation of H2B K12 and K120 which plays a key role in the regulation of macroH2A1 target genes in primary cells. The macroH2A1/PARP-1 pathway regulating H2B K12 and K120 acetylation is disrupted in cancer cells, in part, explaining macroH2A1’s role in cancer suppression. Overall design: Three biological replicates of RNA-seq from cells expressing shRNA directed against macroH2A1 or luciferase as a control
MacroH2A1.1 and PARP-1 cooperate to regulate transcription by promoting CBP-mediated H2B acetylation.
No sample metadata fields
View SamplesWe performed Fluidigm C1 single cell sequencing analysis of wild-type and microRNA deficient (Dgcr8 knockout) mouse embryonic stem cells mock treated or transfected with either miR-294 or let-7. Overall design: Wild-type and Dgcr8 knockout cells grown in naïve culture conditions were mock transfected or transfected with miRNA mimics for let-7b or miR-294, single cells were captured on Fluidigm C1 24 hours post-transfection and then prepared for sequencing on Illumina HiSeq1000 following manufacturer''s protocol.
The impact of microRNAs on transcriptional heterogeneity and gene co-expression across single embryonic stem cells.
Specimen part, Subject
View SamplesIn vitro experiment of stimulation of monocyte-derived dendritic cells with Saccaromyces cerevisiae in exponential growth phase. This experiment was performed to verify the comparability of microarray
Using pathway signatures as means of identifying similarities among microarray experiments.
No sample metadata fields
View SamplesAffymetrix expression arrays were used to compare expression patterns upon knockdown of PARP-1, PARG, SIRT1, or macroH2A in comparison to Luciferase control.
Global analysis of transcriptional regulation by poly(ADP-ribose) polymerase-1 and poly(ADP-ribose) glycohydrolase in MCF-7 human breast cancer cells.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Progression from low- to high-grade in a glioblastoma model reveals the pivotal role of immunoediting.
Specimen part
View SamplesPoly(ADP-ribose) polymerase-1 (PARP-1) and poly(ADP-ribose) glycohydrolase (PARG) are enzymes that modify target proteins in the nucleus by the addition and removal, respectively, of ADP-ribose polymers. Although a role for PARP-1 in gene regulation has been well established, the role of PARG is less clear. To investigate how PARP-1 and PARG coordinately regulate global patterns of gene expression, we used short hairpin RNAs (shRNAs) to stably knockdown PARP-1 or PARG in MCF-7 cells, followed by expression microarray analyses.
Global analysis of transcriptional regulation by poly(ADP-ribose) polymerase-1 and poly(ADP-ribose) glycohydrolase in MCF-7 human breast cancer cells.
No sample metadata fields
View Samples