Salt loading (SL) and water deprivation (WD) are experimental challenges that are often used to study the osmotic circuitry of the brain. Central to this circuit is the supraoptic nucleus (SON) of the hypothalamus, which is responsible for the biosynthesis of the hormones, vasopressin (AVP) and oxytocin (OXT), and their transport to terminals that reside in the posterior lobe of the pituitary. Upon osmotic challenge evoked by a change in blood volume or osmolality, the SON undergoes a function related plasticity that creates an environment that allows for an appropriate hormone response. Here, we have described the impact of SL and WD compared to euhydrated (EU) controls in terms of drinking and eating behaviour, body weight and recorded physiological data including circulating hormone data and plasma and urine osmolality. We have also used microarrays to profile the transcriptome of the SON following SL
A comparison of physiological and transcriptome responses to water deprivation and salt loading in the rat supraoptic nucleus.
Specimen part
View SamplesPulmonary hypoxia is a common complication of chronic lung diseases leading to the development of pulmonary hypertension. The underlying sustained increase in vascular resistance in hypoxia is a response unique to the lung. Thus, we hypothesised that there are genes whose expression is altered selectively in the lung in response to alveolar hypoxia.
Lung-selective gene responses to alveolar hypoxia: potential role for the bone morphogenetic antagonist gremlin in pulmonary hypertension.
No sample metadata fields
View SamplesLineage-specific transcription factors, which drive cellular identity during embryogenesis, have been shown to convert cell fate when express ectopically in heterologous cells. Herein, we screened the key molecular factors governing the dopaminergic neuronal specification during brain development for their ability to generate similar neurons directly from mouse and human fibroblasts. Remarkably, we found a minimal set of three factors Mash1, Nurr1 and Lmx1a/b able to elicit such cellular reprogramming. Molecular and transcriptome studies showed reprogrammed DA neurons to faithfully recapitulate gene expression of their brain homolog cells while lacking expression of other catecholaminergic neuronal types. Induced neurons showed spontaneous electrical activity organized in regular spikes consistent with the pacemaker activity featured by brain DA neurons. The three factors were able to elicit DA neuronal conversion in human fibroblasts from prenatal or adult fibroblasts of healthy donors and a Parkinsons disease patient. Generation of DA induced neurons from somatic cells might have significant implications in studies of neural development, disease in vitro modeling and cell replacement therapies.
Direct generation of functional dopaminergic neurons from mouse and human fibroblasts.
Specimen part
View SamplesTransplantation of GABAergic interneurons (INs) can sustain long-standing benefits in animal models of epilepsy and other neurological disorders. In a therapeutic perspective, a renewable source of functional GABAergic INs is needed. Here, we identified five factors (Foxg1, Sox2, Ascl1, Dlx5 and Lhx6) able to convert fibroblasts directly into induced GABAergic INs (iGABA-INs), displaying the molecular signature of telencephalic INs. The selected factors recapitulate in fibroblasts the activation of transcriptional networks required for the specification of GABAergic fate during telencephalon development. iGABA-INs exhibited progressively maturing firing patterns comparable to those of cortical INs, had synaptic currents and released GABA. Importantly, upon grafting in the hippocampus, iGABA-INs survived, matured and their optogenetic stimulation triggered GABAergic transmission and inhibited the activity of connected granule cells. The five factors also converted human cells into functional GABAergic neurons. These properties define iGABA-INs as a promising tool for disease modeling and cell-based therapeutic approaches. Overall design: Comparison of iGABA-INs transcriptional profile with those of starting fibroblasts and GAD67-GFP+ cortical interneurons.
Rapid Conversion of Fibroblasts into Functional Forebrain GABAergic Interneurons by Direct Genetic Reprogramming.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Strain-specific activation of the NF-kappaB pathway by GRA15, a novel Toxoplasma gondii dense granule protein.
Specimen part
View SamplesToxoplasma strains have been shown to modulate host cell transcription. We have found a type II Toxoplasma gene, GRA15, which activates the nuclear translocation of the NF-kappaB p65 transcription factor.
Strain-specific activation of the NF-kappaB pathway by GRA15, a novel Toxoplasma gondii dense granule protein.
Specimen part
View SamplesToxoplasma strains have been shown to modulate host cell transcription. We have found a type II Toxoplasma gene, GRA15, which activates the nuclear translocation of the NF-kappaB p65 transcription factor.
Strain-specific activation of the NF-kappaB pathway by GRA15, a novel Toxoplasma gondii dense granule protein.
Specimen part
View SamplesTranscriptome analysis was performed from human U87 glioblastoma cell clones: U87 IRE1.NCK DN (U87dn, IRE1 dominant negative) and U87 control (U87ctrl, empty plasmid). Cells were grown in DMEM supplemented with 10% FBS and glutamine for 16 hours in culture prior mRNA isolation and analyses
Inositol-requiring enzyme 1alpha is a key regulator of angiogenesis and invasion in malignant glioma.
Cell line
View SamplesIn the yeast Saccharomyces cerevisiae, cleavage factor I (CFI) and cleavage and polyadenylation factor (CPF) build the core of the transcription termination machinery. CFI comprises the Rna14, Rna15, Pcf11, and Clp1 proteins, as well as the associated Hrp5 RNA-binding protein. We found that CFI participates in the DNA damage response and that rna14-1 shows synthetic growth defects with mutants of different repair pathways, including homologous recombination, non-homologous end joining, post replicative repair, mismatch repair, and nucleotide excision repair, implicating that impaired RNAPII termination and 3-end processing decreases the cellular tolerance for DNA damage. Beyond replication progression defects, we found that bypass of the G1/S checkpoint in rna14-1 cells leads to synthetic sickness, accumulation of phosphorylated H2A, as well as increase in Rad52-foci and in recombination. Our data provide evidence that CFI dysfunction impairs RNAPII turnover, leading to replication hindrance and lower tolerance to exogenous DNA damage. These findings underscore the importance of coordination between transcription termination, DNA repair and replication in the maintenance of genomic stability.
Cleavage factor I links transcription termination to DNA damage response and genome integrity maintenance in Saccharomyces cerevisiae.
No sample metadata fields
View Samplesthe nuclear pore complex (NPC) is emerging as an important mediator of cellular processes beyond molecule transport, including control of gene expression, replication and DNA repair.
The Nup84 complex coordinates the DNA damage response to warrant genome integrity.
No sample metadata fields
View Samples