Lactic acid bacteria confer a variety of health benefits. Here we investigate the mechanisms by which Lactobacillus brevis KB290 enhances cell-mediated cytotoxic activity. We fed a diet containing KB290 (3 10^9 colony-forming units/g) , or potato starch, to 9-week-old female BALB/c mice for 1, 4, 7, or 14 days and examined the cytotoxic activity of splenocytes was measured. RNA was extracted from the spleen and analyzed for gene expression by DNA microarray.
Effect of Lactobacillus brevis KB290 on the cell-mediated cytotoxic activity of mouse splenocytes: a DNA microarray analysis.
Sex, Age, Specimen part
View SamplesPersistent colonization of the gastric mucosa by Helicobacter pylori (Hp) elicits chronic inflammation and aberrant epithelial cell proliferation, which increases the risk of gastric cancer. We examined the ability of microRNAs to modulate gastric cell proliferation in response to persistent Hp infection and found that epigenetic silencing of miR-210 plays a key role in gastric disease progression. Importantly, DNA methylation of the miR-210 gene was increased in Hp-positive human gastric biopsies as compared to Hp-negative controls. Moreover silencing of miR-210 in gastric epithelial cells promoted proliferation. We identified STMN1 and DIMT1 as miR-210 target genes and demonstrated that inhibition of miR-210 expression augmented cell proliferation by activating STMN1 and DIMT1. Together, our results highlight inflammation-induced epigenetic silencing of miR-210 as a mechanism of induction of chronic gastric diseases, including cancer, during Hp infection.
Epigenetic silencing of miR-210 increases the proliferation of gastric epithelium during chronic Helicobacter pylori infection.
Cell line
View SamplesThe CCR4-NOT complex, bearing poly(A) deadenylation activity, is a highly conserved regulator that is involved in biological control; however its action mechanisms and physiological targets remain unclear. Using genetic deletion of the CNOT3 subunit of this complex in early B cell progenitors, we show that CNOT3 plays a critical role in pro- to pre-B cell transition. CNOT3 participated in controlling germline transcription, compaction of the immunoglobulin heavy chain (Igh) locus, and Igh rearrangement, and in destabilizing tumor suppressor p53 mRNA. Moreover, by genetic ablation of p53 or introduction of pre-rearranged Igh transgene, the B cell developmental defect in the Cnot3 knockout background could be partly rescued, suggesting that CCR4-NOT complex exerts critical control in B cell differentiation processes by co-utilizing transcriptional and post-transcriptional mechanisms. Overall design: Pro-B cells mRNA profiles of Mb1(cre/+) and Cnot3(fl/fl)Mb1(cre/+) mice were generated by deep sequencing using Illumina HiSeq 1500
CNOT3 contributes to early B cell development by controlling Igh rearrangement and p53 mRNA stability.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Sox9 Controls Self-Renewal of Oncogene Targeted Cells and Links Tumor Initiation and Invasion.
Specimen part
View SamplesSox9 is a transcription factor expressed in most solid tumors. However, the molecular mechanisms underlying Sox9 function during tumorigenesis remain unclear. Here, using a genetic mouse model of basal cell carcinoma (BCC), the most frequent cancer in human, we show that Sox9 is expressed from the earliest step of tumor formation in a Wnt/-catenin dependent manner. Deletion of Sox9 together with the constitutive activation of Hedgehog (HH) signaling completely prevents BCC formation and leads to a progressive loss of oncogene expressing cells. Transcriptional profiling of oncogene expressing cells with Sox9 deletion, combined with in vivo ChIP-sequencing uncovers a cancer-specific gene network regulated by Sox9 that promotes stemness, extracellular matrix (ECM) deposition and cytoskeleton remodeling while repressing epidermal differentiation. Our study identifies the molecular mechanisms regulated by Sox9 that links tumor initiation and invasion.
Sox9 Controls Self-Renewal of Oncogene Targeted Cells and Links Tumor Initiation and Invasion.
Specimen part
View SamplesCancer stem cells (CSCs) have been reported in various cancers including skin squamous cell carcinoma (SCC). The molecular mechanisms regulating tumour initiation and stemness are still poorly characterized. Here, we found that Sox2, a transcription factor expressed in various types of embryonic and adult stem cells (SCs), was the most upregulated transcription factor in CSCs of squamous skin tumours. Sox2 is absent in normal epidermis and begins to be expressed in the vast majority of mouse and human pre-neoplastic skin tumours and continues to be expressed in a heterogeneous manner in invasive mouse and human SCCs. In contrast to other SCCs, in which Sox2 is frequently genetically amplified, the expression of Sox2 in mouse and human skin SCCs is transcriptionally regulated. Conditional deletion of Sox2 in the mouse epidermis dramatically decreases skin tumour formation following chemical induced carcinogenesis. Using Sox2-GFP knockin mice, we showed that Sox2 expressing cells in invasive SCC are greatly enriched in tumour propagating cells (TPCs) that further increase upon serial transplantations. Lineage ablation of Sox2 expressing cells within primary benign and malignant SCCs leads to tumour regression, consistent with the critical role of Sox2 expressing cells in tumour maintenance. Conditional Sox2 deletion in pre-existing skin papilloma and SCC leads to their regression and decreases their ability to be propagated upon transplantation into immunodeficient mice, supporting the essential role of Sox2 in regulating CSC functions. Transcriptional profiling of Sox2-GFP expressing CSC and upon Sox2 deletion uncovered a gene network regulated by Sox2 in primary tumour cells in vivo. Chromatin immunoprecipitation identified several direct Sox2 target genes controlling tumour stemness, survival, proliferation, adhesion, invasion, and paraneoplastic syndrome. Altogether, our study demonstrates that Sox2, by marking and regulating the functions of skin tumour initiating cells and CSCs, establishes a continuum between tumour initiation and progression in primary skin tumours.
SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma.
No sample metadata fields
View SamplesCancer stem cells (CSCs) have been reported in various cancers including skin squamous cell carcinoma (SCC). The molecular mechanisms regulating tumour initiation and stemness are still poorly characterized. Here, we found that Sox2, a transcription factor expressed in various types of embryonic and adult stem cells (SCs), was the most upregulated transcription factor in CSCs of squamous skin tumours. Sox2 is absent in normal epidermis and begins to be expressed in the vast majority of mouse and human pre-neoplastic skin tumours and continues to be expressed in a heterogeneous manner in invasive mouse and human SCCs. In contrast to other SCCs, in which Sox2 is frequently genetically amplified, the expression of Sox2 in mouse and human skin SCCs is transcriptionally regulated. Conditional deletion of Sox2 in the mouse epidermis dramatically decreases skin tumour formation following chemical induced carcinogenesis. Using Sox2-GFP knockin mice, we showed that Sox2 expressing cells in invasive SCC are greatly enriched in tumour propagating cells (TPCs) that further increase upon serial transplantations. Lineage ablation of Sox2 expressing cells within primary benign and malignant SCCs leads to tumour regression, consistent with the critical role of Sox2 expressing cells in tumour maintenance. Conditional Sox2 deletion in pre-existing skin papilloma and SCC leads to their regression and decreases their ability to be propagated upon transplantation into immunodeficient mice, supporting the essential role of Sox2 in regulating CSC functions. Transcriptional profiling of Sox2-GFP expressing CSC and upon Sox2 deletion uncovered a gene network regulated by Sox2 in primary tumour cells in vivo. Chromatin immunoprecipitation identified several direct Sox2 target genes controlling tumour stemness, survival, proliferation, adhesion, invasion, and paraneoplastic syndrome. Altogether, our study demonstrates that Sox2, by marking and regulating the functions of skin tumour initiating cells and CSCs, establishes a continuum between tumour initiation and progression in primary skin tumours.
SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma.
Specimen part
View SamplesiPSC-derived NSPCs, which were induced by two different protocols (Embryoid body or Neural rosette) followed by expansion in free-floating culture (neurospheres), had closely resembled profiles.
Pathological classification of human iPSC-derived neural stem/progenitor cells towards safety assessment of transplantation therapy for CNS diseases.
Sex, Race
View SamplesThe entire small intestine was obseved by balloon endoscopy. Biopsy specimens were taken from jejunum, ileum and colon, respectively.
Reduced Human α-defensin 6 in Noninflamed Jejunal Tissue of Patients with Crohn's Disease.
Specimen part, Disease, Disease stage
View SamplesThis SuperSeries is composed of the SubSeries listed below.
5-hydroxymethylcytosine marks promoters in colon that resist DNA hypermethylation in cancer.
Sex, Specimen part, Cell line, Treatment, Subject
View Samples