Pseudomonas aeruginosa displays tremendous metabolic diversity, controlled in part by the abundance of transcription regulators in the genome. We have been investigating P. aeruginosas response to the host, particularly changes regulated by the host-derived quaternary amines choline and glycine betaine (GB). We previously identified GbdR as an AraC-family transcription factor that directly regulates choline acquisition from host phospholipids (via binding to plcH and pchP promoters), is required for catabolism of the choline metabolite GB, and is an activator that induces transcription in response to GB or dimethylglycine. Our goal was to characterize the GbdR regulon in P. aeruginosa using genetics and chemical biology in combination with transcriptomics and in vitro DNA-binding assays. Here we show that GbdR activation regulates transcription of 26 genes from 12 promoters; 11 of which have measureable binding to GbdR in vitro. The GbdR regulon includes the genes encoding GB, dimethylglycine, sarcosine, glycine, and serine catabolic enzymes, and the BetX and CbcXWV quaternary amine transport proteins. . Additionally, identification of two uncharacterized regulon members suggests roles for these proteins in response to choline metabolites.
Characterization of the GbdR regulon in Pseudomonas aeruginosa.
Treatment
View SamplesWhilst the association of Epstein-Barr virus (EBV) with Burkitt lymphoma (BL) has long been recognized, the precise role of the virus in BL pathogenesis is not fully resolved. EBV can be lost spontaneously from some BL cell lines, and these EBV-loss lymphoma cells reportedly have a survival disadvantage. We have generated an extensive panel of EBV-loss clones from multiple BL backgrounds and examined their phenotype comparing them to their isogenic EBV-positive counterparts. Whilst loss of EBV from BL cells is rare, it is consistently associated with an enhanced predisposition to undergo apoptosis and reduced tumorigenicity in vivo. We investigated whether there were common gene expression changes between EBV-positive and loss clones derived for four endemic Burkitt lyphoma cell lines that could explain the apoptosis sensitivity of clones that had lost EBV.
Coordinated repression of BIM and PUMA by Epstein-Barr virus latent genes maintains the survival of Burkitt lymphoma cells.
Cell line
View SamplesNeuropathic pain is an apparently spontaneous experience triggered by abnormal physiology of the peripheral or central nervous system, which evolves with time. Neuropathic pain arising from peripheral nerve injury is characterized by a combination of spontaneous pain, hyperalgesia and allodynia. There is no evidence of this type of pain in human infants or rat pups; brachial plexus avulsion, which causes intense neuropathic pain in adults, is not painful when the injury is sustained at birth. Since infants are capable of nociception from before birth and display both acute and chronic inflammatory pain behaviour from an early neonatal age, it appears that the mechanisms underlying neuropathic pain are differentially regulated over a prolonged postnatal period.
Differential regulation of immune responses and macrophage/neuron interactions in the dorsal root ganglion in young and adult rats following nerve injury.
Specimen part
View SamplesThe human cytomegalovirus (HCMV) encodes the chemokine receptor US28 that exhibits constitutive activity. NIH-3T3 cells stably transfected with US28 present a pro-angiogenic and transformed phenotype both in vitro and in vivo.
The human cytomegalovirus-encoded chemokine receptor US28 promotes angiogenesis and tumor formation via cyclooxygenase-2.
No sample metadata fields
View SamplesWe performed a microarray experiment to assess the global changes in transcription occurring in leaves and roots of the vitamin B6 deficient pdx1.3 knockout mutant in comparison to WT. Vitamin B6 (pyridoxal 5-phosphate) is an essential cofactor of many metabolic enzymes. Plants biosynthesize the vitamin de novo employing two enzymes, pyridoxine synthase1 (PDX1) and PDX2. In Arabidopsis (Arabidopsis thaliana), there are two catalytically active paralogs of PDX1 (PDX1.1 and PDX1.3) producing the vitamin at comparable rates. Since single mutants are viable but the pdx1.1 pdx1.3 double mutant is lethal, the corresponding enzymes seem redundant.
Consequences of a deficit in vitamin B6 biosynthesis de novo for hormone homeostasis and root development in Arabidopsis.
Specimen part
View SamplesThoracic perivascular adipose tissue (PVAT) is a unique adipose depot that likely influences vascular function and susceptibility to pathogenesis in obesity and metabolic syndrome. Surprisingly, PVAT has been reported to share characteristics of both brown and white adipose, but a detailed direct comparison to interscapular brown adipose tissue (BAT) has not been performed. Here we show by full genome DNA microarray analysis that global gene expression profiles of PVAT are virtually identical to BAT, with equally high expression of Ucp-1, Cidea and other genes known to be uniquely or very highly expressed in BAT. PVAT and BAT also displayed nearly identical phenotypes upon immunohistochemical analysis, and electron microscopy confirmed that PVAT contained multilocular lipid droplets and abundant mitochondria. Compared to white adipose tissue (WAT), PVAT and BAT from C57BL/6 mice fed a high fat diet for 13 weeks had markedly lower expression of immune cell-enriched mRNAs, suggesting resistance to obesity-induced inflammation. Indeed, staining of BAT and PVAT for macrophage markers (F4/80, CD68) in obese mice showed virtually no macrophage infiltration, and FACS analysis of BAT confirmed the presence of very few CD11b+/CD11c+ macrophages in BAT (1.0%) in comparison to WAT (31%). In summary, murine PVAT from the thoracic aorta is virtually identical to interscapular BAT, is resistant to diet-induced macrophage infiltration, and thus may play an important role in protecting the vascular bed from thermal and inflammatory stress.
Similarity of mouse perivascular and brown adipose tissues and their resistance to diet-induced inflammation.
Specimen part, Treatment
View SamplesHigh throughput massively parallel sequencing on mRNA libraries generated from cortices of bexarotene or vehicle treated APP/PS1 Overall design: Read counts analyzed for differential gene expression using edgeR
RNA-sequencing reveals transcriptional up-regulation of Trem2 in response to bexarotene treatment.
Specimen part, Cell line, Subject
View SamplesWe used microarray data to look for gene differentially expressed in the aorta of WT and L-PGDS ko male mice.
Lipocalin-Like Prostaglandin D Synthase but Not Hemopoietic Prostaglandin D Synthase Deletion Causes Hypertension and Accelerates Thrombogenesis in Mice.
Sex, Specimen part
View SamplesWe examined the impact of Abca1 deficiency and APOE isoform expression on the response to TBI using 3-months-old, human APOE3+/+ (E3/Abca1+/+) and APOE4+/+ (E4/Abca1+/+) targeted replacement mice, and APOE3+/+ and APOE4+/+ mice with only one functional copy of the Abca1 gene (E3/Abca1+/-; E4/Abca1+/-). TBI-treated mice received a craniotomy followed by a controlled cortical impact (CCI) brain injury in the left hemisphere; sham-treated mice received the same surgical procedure without the impact. We performed RNA-seq using samples from cortices and hippocampi collected at 14 days post-injury, followed by genome-wide differential gene expression analysis. Overall design: We used 3-months-old, human APOE3+/+ (E3/Abca1+/+) and APOE4+/+ (E4/Abca1+/+) targeted replacement mice, and APOE3+/+ and APOE4+/+ mice with only one functional copy of the Abca1 gene (E3/Abca1+/-; E4/Abca1+/-). Groups consisted of 6-8 animals of both genders. TBI-treated mice received a craniotomy followed by a controlled cortical impact (CCI) brain injury in the left hemisphere; sham-treated mice received the same surgical procedure without the impact. We performed RNA-seq using samples from cortices and hippocampi collected at 14 days post-injury from 58 samples, followed by genome-wide differential gene expression analysis.
ABCA1 haplodeficiency affects the brain transcriptome following traumatic brain injury in mice expressing human APOE isoforms.
Sex, Treatment, Subject
View SamplesAustism spectrum disorder (ASD) is a heterogeneous behavioral disease most commonly characterized by severe impairment of social engagement and the presence of repetitive activities. The molecular etiology of ASD is still largely unknown despite a strong genetic component. Part of the difficulty in turning genetics into disease mechanisms and potentially new therapeutics is the sheer number and diversity of the genes that have been associated with ASD and ASD symptoms. The goal of this work is to use shRNA-generated models of genetic defects proposed as causative for ASD to identify the common pathways that might explain how they produce a common clinical outcome. Transcript levels of Mecp2, Mef2a, Mef2d, Fmr1, Nlgn1, Nlgn3, Pten, and Shank3 were knocked-down in mouse primary neuron cultures using shRNA/lentivirus constructs. Whole genome expression analysis was conducted for each of the knock-down cultures as well as a mock-transduced culture and a culture exposed to a lentivirus expressing luciferase. Gene set enrichment and a causal reasoning engine were employed to indentify pathway level perturbations generated by the transcript knock-down. Quantitation of the shRNA targets confirmed the successful knock-down at the transcript and protein levels of at least 75% for each of the genes. After subtracting out potential artifacts caused by transfection and viral infection, gene set enrichment and causal reasoning engine analysis showed that a significant number of gene expression changes mapped to pathways associated with neurogenesis, long-term potentiation, and synaptic activity. This work demonstrates that despite the complex genetic nature of ASD, there are common molecular mechanisms that connect many of the best established autism candidate genes. By identifying the key regulatory checkpoints in the interlinking transcriptional networks underlying autism, we are better able to discover the ideal points of intervention that provide the broadest efficacy across the diverse population of autism patients.
Transcriptomic analysis of genetically defined autism candidate genes reveals common mechanisms of action.
Specimen part, Treatment
View Samples