The growth and fruit quality of grapevine are widely affected by abnormal climatic conditions such as water deficit. But how grapevine responds to drought stress is still largely unknown. Here we found that VaNAC26, a member of NAC transcription factor family, was up-regulated dramatically during cold, drought and salinity treatments in Vitis amurensis, a cold and drought-hardiness wild Vitis species. Ectopic overexpression of VaNAC26 enhanced the drought and salt tolerances in transgenic Arabidopsis. Higher activities of antioxidant enzymes and the lower concentration of H2O2 and O2- were found in VaNAC26-OE lines than in wild type plants under drought stress. These results indicate that the reactive oxygen species (ROS) scavenging was enhanced by VaNAC26 in transgenic lines. Microarray based transcriptome analysis reveals that genes related to jasmonic acid (JA) synthesis and signaling were up-regulated in VaNAC26-OE lines under both normal and drought conditions. VaNAC26 showed a specific binding ability on NACRS motif, which was broadly existent in the promoter regions of up-regulated genes in transgenic lines. Endogenous JA content was found increased obviously in VaNAC26-OE-2/3 lines. Our data suggests that VaNAC26 responds to abiotic stresses and may enhance the drought tolerance by transcriptional regulation of JA synthesis in Arabidopsis.
Expression of Vitis amurensis NAC26 in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis.
Specimen part
View SamplesAbraxane, a nanoparticle (NP) formulation of paclitaxel (PTX), has been demonstrated to be more effective than Taxol, the small molecule formulation, for the treatment of breast cancer and non-small cell lung cancer (NSCLC). It was reported that Abraxane existed in plasma as particles with the size of ~10 nm. NPs get in and out of the cells by endocytosis and exocytosis, whereas small molecules by diffusion and efflux. It is intriguing to know whether the improved pharmaceutical performance is related to the “too-big-to-be-pumped-out” phenomenon. Here we established an Abraxane-resistant NSCLC cell line A549/Abr and compared its transcriptomes with that of the Abraxane-sensitive parental cell line by RNA-Seq technology. To our surprise, the most significantly up-regulated genes were ABC transporters, the common efflux pump for small molecules. We further found that the ABCB1 inhibitor Verapamil reversed the drug resistance and confirmed the important role of ABCB1 in Abraxane resistance. Overall design: mRNA profiles of A549 and A549/Abr cells were generated using Illumina Hiseq 2000 and compared.
Abraxane, the Nanoparticle Formulation of Paclitaxel Can Induce Drug Resistance by Up-Regulation of P-gp.
No sample metadata fields
View SamplesExpression profiling of whole body (WB) FXR knockout (KO) mice (FXR WB KO), liver-specific FXR KO mice (AFXR Cre+) and enterocyte specific FXR KO mice (VFXR Cre+) on a C57BL/6J genetic background
Genome-wide binding and transcriptome analysis of human farnesoid X receptor in primary human hepatocytes.
Sex, Specimen part, Treatment
View SamplesOur project focuses on retinoic acid (RA) effect on hepatic lipid homeostasis. Even though RA has more than one receptor including retinoids x receptor (RXR) and retinoic acid receptor (RAR), most probably, RA effect on lipid homeostasis is mediated by RXR and its partners such as PXR, FXR, and PPAR. So we treated the wild type and RXR-knockout mice by retinoic acid to check the global gene expression especially for lipid homeostasis genes.
The role of retinoic acid in hepatic lipid homeostasis defined by genomic binding and transcriptome profiling.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genome-wide binding and transcriptome analysis of human farnesoid X receptor in primary human hepatocytes.
Specimen part
View SamplesFarnesoid X receptor (FXR) is a ligand activated nuclear receptor belonging to the nuclear receptor superfamily. Bile acids (BAs) are the endogenous ligand for FXR. FXR is a master regulator of BA homestasis, including BA synthesis, metabolism, transport, and enterohepatic circulation of BAs. Besides, FXR is involved in regulating diverse physioligical function in both humans and mice.
Genome-wide binding and transcriptome analysis of human farnesoid X receptor in primary human hepatocytes.
Specimen part
View SamplesTo identify QKI targets, we performed QKI knockdown in BEAS2B cells and analyzed alternative splicing patterns by high-throughput RNA sequencing. Overall design: The mRNA profiles of control- and QKI-knockdown BEAS2B cells were generated by deep sequencing using Illumina GAIIx sequencer.
The RNA-binding protein QKI suppresses cancer-associated aberrant splicing.
No sample metadata fields
View SamplesWe performed a phase I/II, randomized, double-blind, placebo-controlled dose-escalation study to examine the safety, immunogenicity, and biological effects of active immunization with interferon alpha-Kinoid (IFN-K) in systemic lupus erythematosus (SLE) patients. Women 18-50 years of age with mild to moderate SLE were immunized with three (n=10) or four doses (n=9) of 30, 60, 120, 240 microgram IFN-K or saline.
Down-regulation of interferon signature in systemic lupus erythematosus patients by active immunization with interferon α-kinoid.
Sex, Age, Specimen part, Disease, Disease stage, Treatment, Race
View SamplesDigital gene expression profiling was used to invesigate the differetiated genes between primary mouse hepatic stellate cells infected with AGGF1 adenovirus particles or negative control adenovirus pairticles. Overall design: Primary hepatic stellate cells isolated from mice were cultured in vitro, infected with AGGF1 adenovirus particles or negative control adenovirus particles, at day 8, total RNA were prepared and used for digital gene expression tag profiling.
Angiogenic factor with G patch and FHA domains 1 (Aggf1) regulates liver fibrosis by modulating TGF-β signaling.
Specimen part, Cell line, Subject, Time
View SamplesRibosome profiling of MDA-MB-231 cells treated with Silvestrol to monitor transcriptome wide, eIF4A-dependent changes in translation efficiency Overall design: Translation efficiency (TE) of mRNAs dervied from ribosome footprints was monitored in the presence or absence of 25 nM Silvestrol, an inhibitor of eukaryotic translation initiation factor 4A (eIF4A). Transcripts with reduced TE in the presence of Silvestrol were compare to transcripts with reduced TE in the presence of INK128, a catalytic mTOR inhbitor.
Transcriptome-wide characterization of the eIF4A signature highlights plasticity in translation regulation.
No sample metadata fields
View Samples