This SuperSeries is composed of the SubSeries listed below.
Transcriptional signatures of Itk-deficient CD3+, CD4+ and CD8+ T-cells.
No sample metadata fields
View SamplesThe Tec-family kinase Itk plays an important role during T-cell activation and function, and controls also conventional versus innate-like T-cell development. We have characterized the transcriptome of Itk-deficient CD3+ T-cells, including CD4+ and CD8+ subsets, using Affymetrix microarrays. The largest difference between Itk-/- and Wt CD3+ T-cells was found in unstimulated cells, e.g. for killer cell lectin-like receptors. Compared to anti-CD3-stimulation, anti-CD3/CD28 significantly decreased the number of transcripts suggesting that the CD28 co-stimulatory pathway is mainly independent of Itk. The signatures of CD4+ and CD8+ T-cell subsets identified a greater differential expression than in total CD3+ cells. Cyclosporin (CsA)-treatment had a stronger effect on transcriptional regulation than Itk-deficiency, suggesting that only a fraction of TCR-mediated calcineurin/NFAT-activation is dependent on Itk. Bioinformatic analysis of NFAT-sites of the group of transcripts similarly regulated by Itk-deficiency and CsA-treatment, followed by chromatin-immunoprecipitation, revealed NFATc1-binding to the Bub1, IL7R, Ctla2a, Ctla2b, and Schlafen1 genes. Finally, to identify transcripts that are regulated by Tec-family kinases in general, we compared the expression profile of Itk-deficient T-cells with that of Btk-deficient B-cells and a common set of transcripts was found. Taken together, our study provides a general overview about the global transcriptional changes in the absence of Itk.
Transcriptional signatures of Itk-deficient CD3+, CD4+ and CD8+ T-cells.
No sample metadata fields
View SamplesThe Tec-family kinase Itk plays an important role during T-cell activation and function, and controls also conventional versus innate-like T-cell development. We have characterized the transcriptome of Itk-deficient CD3+ T-cells, including CD4+ and CD8+ subsets, using Affymetrix microarrays. The largest difference between Itk-/- and Wt CD3+ T-cells was found in unstimulated cells, e.g. for killer cell lectin-like receptors. Compared to anti-CD3-stimulation, anti-CD3/CD28 significantly decreased the number of transcripts suggesting that the CD28 co-stimulatory pathway is mainly independent of Itk. The signatures of CD4+ and CD8+ T-cell subsets identified a greater differential expression than in total CD3+ cells. Cyclosporin (CsA)-treatment had a stronger effect on transcriptional regulation than Itk-deficiency, suggesting that only a fraction of TCR-mediated calcineurin/NFAT-activation is dependent on Itk. Bioinformatic analysis of NFAT-sites of the group of transcripts similarly regulated by Itk-deficiency and CsA-treatment, followed by chromatin-immunoprecipitation, revealed NFATc1-binding to the Bub1, IL7R, Ctla2a, Ctla2b, and Schlafen1 genes. Finally, to identify transcripts that are regulated by Tec-family kinases in general, we compared the expression profile of Itk-deficient T-cells with that of Btk-deficient B-cells and a common set of transcripts was found. Taken together, our study provides a general overview about the global transcriptional changes in the absence of Itk.
Transcriptional signatures of Itk-deficient CD3+, CD4+ and CD8+ T-cells.
No sample metadata fields
View SamplesCXCL5, a strong neutrophil-chemoattractant, has been reportet to be expressed in different cancer entities with diverse outcomes in disease progression. Contradictory outcome in disease progression in different tumor entities might be explained by a tumor type specific expression pattern of chemokines, chemokine receptors and growth factors that act in concert with CXCL5. This study evaluates the impact of CXCL5 expression on the tumor mircoenvironment in a syngeneic mouse melanoma model. Overall design: 105 B16F1 and B16F1-CXCL5 murine melanoma were injected intradermally into the flank skin of C57BL/6 J mice. Primary tumors were grown up to 250-350mm³, excised, snap frozen and then processed for RNA sequencing.
CXCL5 as Regulator of Neutrophil Function in Cutaneous Melanoma.
Specimen part, Treatment, Subject
View SamplesInsults to cellular health cause p53 protein accumulation and loss of p53 function leads to tumorigenesis. Thus, p53 has to be tightly controlled. Here we report that the BTB/POZ domain transcription factor PATZ1 (MAZR), previously known for its transcriptional suppressor functions in T lymphocytes, is a crucial regulator of p53. The novel inhibitory role of PATZ1 on the p53 protein marks it as a proto-oncogene. PATZ1 deficient cells have reduced proliferative capacity which we assess by RNASeq and real time cell growth rate analysis. PATZ1 modifies the expression of p53 target genes associated with cell proliferation gene ontology terms. Moreover, PATZ1 regulates several genes involved in cellular adhesion and morphogenesis. Significantly, treatment with the DNA damage inducing drug doxorubicin results in the loss of the PATZ1 transcription factor, as p53 accumulates. We find that PATZ1 binds to p53 and inhibits p53 dependent transcription activation. We examine the mechanism of this functional inhibitory interaction and demonstrate that PATZ1 excludes p53 from DNA binding. This study documents PATZ1 as a novel player in the p53 pathway. Overall design: RNA-seq was used to define differentially expressed genes in wild-type and PATZ1-/- MEFs. Each sample was represented in triplicate.
PATZ1 Is a DNA Damage-Responsive Transcription Factor That Inhibits p53 Function.
No sample metadata fields
View SamplesTo identify genes specifically expressed in WT or Kat6a knockout CD8+ T cells, the gene expression profiles of T cell subsets from naïve or LCMV WE infected mice were compared. Overall design: Three wildtype and three Kat6a knockout P14 transgenic mice were infected with LCMV WE for 8 days. Two wildtype and two knockout mice were uninfected. CD8+ T cells were harvested from the spleens of all mice. In the infected cohort, the T cells were further subsetted into KLRG1+ and KLRG1-.
Acetylation of the Cd8 Locus by KAT6A Determines Memory T Cell Diversity.
Subject
View SamplesWe investigated transcriptional changes in CD4CD8aa and CD4 intraepthelial lymphocytes.
Transcriptional reprogramming of mature CD4⁺ helper T cells generates distinct MHC class II-restricted cytotoxic T lymphocytes.
Specimen part
View SamplesBackground: Obesity is a risk factor for breast cancer in postmenopausal women and is associated with decreased survival and less favorable clinical characteristics such as greater tumor burden, higher grade, and poor prognosis, regardless of menopausal status. Despite the negative impact of obesity on clinical outcome, molecular mechanisms through which excess adiposity influences breast cancer etiology are not well-defined.
Effect of obesity on molecular characteristics of invasive breast tumors: gene expression analysis in a large cohort of female patients.
Disease stage
View SamplesPurpose: identifying genes responding to insulin stimulation in S2R+ cells through whole transcriptome RNA-seq analyses Methods: Total RNA was extracted from S2R+ cells using TRIzol® reagent (Invitrogen). After assessing RNA quality with an Agilent Bioanalyzer, libraries were constructed with Illumina TruSeq mRNA Library Prep Kit , libraries were sequenced using an Illumina HiSeq 4000 at the Columbia Genome Center (http://systemsbiology.columbia.edu/genome-center). Results: Using an time series data analysis workflow incorporating polynormials , we identified 1254 temproally differentially expressed genes responding to insulin stimulation in the S2R+ cells. Overall design: the pre-starved S2R+ cells ( with serum free medium) were stimulated with insulin; triplicate samples were collected at basline and every 20minutes time interval up to three hours; transcriptome profiling
Interspecies analysis of MYC targets identifies tRNA synthetases as mediators of growth and survival in MYC-overexpressing cells.
Specimen part, Treatment, Subject, Time
View SamplesUremic media calcification is not only driven by systemic factors such as hyperphosphatemia, but also crticially dependent on vascular smooth muscle cells per se. We hypothesized that the different developmental origins of vscular smooth muscle cells might lead to a heterogeneous susceptibility to develop media calcification.
Heterogeneous susceptibility for uraemic media calcification and concomitant inflammation within the arterial tree.
Specimen part
View Samples