Sensorineural hearing loss affects the majority of the elderly population. Mammalian hair cells (HC) do not regenerate and current stem cell and gene delivery protocols result only in immature hair cells like-cells. For this reason, characterization of the transcriptional cascades that lead to development and survival of inner ear HC is essential for designing molecular-based treatments for deafness. We employed a cell type-specific approach to analyze the transcriptomes of the mouse early postnatal auditory and vestibular sensory epithelia and of hair cells derived from zebrafish model. Overall design: Murine auditory and vestibular epithelia were separated into hair-cells (HCs) and epithelial non-sensory cells (ENSCs) by flow cytometry. Gene expression levels were recorded in independent triplicates from the sorted cells using RNA-seq
RFX transcription factors are essential for hearing in mice.
No sample metadata fields
View SamplesSensorineural hearing loss affects the majority of the elderly population. Mammalian hair cells (HC) do not regenerate and current stem cell and gene delivery protocols result only in immature hair cells like-cells. For this reason, characterization of the transcriptional cascades that lead to development and survival of inner ear HC is essential for designing molecular-based treatments for deafness. We employed a cell type-specific approach to analyze the transcriptomes of the mouse early postnatal auditory and vestibular sensory epithelia and of hair cells derived from zebrafish model. Overall design: We utilized the ppv3b:GFP transgenic zebrafish, which express GFP predominantly in HC. We sorted GFP-positive and negative cells from 5 day post fertilization (dpf) larvae using flow cytometry, and profiled their transcriptomes using RNA-seq
RFX transcription factors are essential for hearing in mice.
No sample metadata fields
View SamplesComparison of gene expression signatures in undifferentiated hESCs against differentiated embryoid bodies to identify key signatures defining self-renewal of hESCs.
Discovery of consensus gene signature and intermodular connectivity defining self-renewal of human embryonic stem cells.
Specimen part, Cell line
View SamplesWe have performed gene expression microarray analysis to profile transcriptomic signatures affected by EtOH during neural differentiation of human embryonic stem cells
Molecular effect of ethanol during neural differentiation of human embryonic stem cells <i>in vitro.</i>
Specimen part
View SamplesThe aim of this study was to assess the impact of oocyte competence on subsequent fertility. Based on knowledge already accessible in mammals and on bioinformatics tools including the chicken genome sequence, we focused on the expression of genes involved in the processes of fertilization and of early embryo development. The study was performed using two complementary approaches: a descriptive study of standard laying hens and then a differential study performed with hens from experimental lines expressing broad variations of achieved fertility (approximately 20 per cent). A differential kinetic study is performed on INRA lines selected on the basis of their fertility potential in purpose of hopefully access gene markers of fertility performance.
Identification of germinal disk region derived genes potentially involved in hen fertility.
No sample metadata fields
View SamplesWe report RNA-Seq data of S.cerevisiae PPN1 knock-out yeast strain and PPN1 overproducing transformant yeast strain grown to logarithmic stage in control medium and in the medium containing 5mM manganese. Overall design: Yeast were grown to logarithmic growth stage in control YPD medium and in YPD medium with 5 mM MnSO4.
The Reduced Level of Inorganic Polyphosphate Mobilizes Antioxidant and Manganese-Resistance Systems in <i>Saccharomyces cerevisiae</i>.
Cell line, Subject
View SamplesThe aim of this study was to assess the impact of oocyte competence on subsequent fertility. Based on knowledge already accessible in mammals and on bioinformatics tools including the chicken genome sequence, we focused on the expression of genes involved in the processes of fertilization and of early embryo development.
Search for the genes involved in oocyte maturation and early embryo development in the hen.
No sample metadata fields
View SamplesWe studied alcohol's effect on human embryonic stem cell line, H9. Our main objective was to delineate the molecular mechanisms that are involved in changing the differentiation potential of hESCs.
Gene expression signatures affected by alcohol-induced DNA methylomic deregulation in human embryonic stem cells.
Cell line
View SamplesAplidin (plitidepsin) is a novel marine-derived antitumor agent presently undergoing phase II clinical trials in hematological malignancies and solid tumors. Lack of bone marrow toxicity has encouraged further development of this drug for treatment of leukemia and lymphoma. Multiple signaling pathways have been shown to be involved in Aplidin-induced apoptosis and cell cycle arrest in G1 and G2 phase. However, the exact mechanism(s) of Aplidin action remains to be elucidated. Here we demonstrate that mitochondria-associated or -localized processes are the potential cellular targets of Aplidin. Whole genome gene-expression profiling (GEP) revealed that fatty acid metabolism, sterol biosynthesis and energy metabolism, including the tricarboxylic acid cycle and ATP synthesis are affected by Aplidin treatment. Moreover, mutant MOLT-4, human leukemia cells lacking functional mitochondria, were found to be resistant to Aplidin. Cytosine arabinoside (araC), which also generates oxidative stress but does not affect the ATP pool, showed synergism with Aplidin in our leukemia and lymphoma models in vitro and in vivo. These studies provide new insights into the mechanism of action of Aplidin. The efficacy of the combination of Aplidin and araC is currently being evaluated in clinical phase I/II program for the treatment of patients with relapsed leukemia and high-grade lymphoma.
Aplidin synergizes with cytosine arabinoside: functional relevance of mitochondria in Aplidin-induced cytotoxicity.
No sample metadata fields
View SamplesFormation of the complex vertebrate nervous system begins when pluripotent cells of the early embryo are directed to acquire a neural fate. Although cell intrinsic controls play an important role in this process, the molecular nature of this regulation is not well defined. Here we assessed the role for Geminin, a nuclear protein expressed in embryonic cells, in neural fate acquisition from mouse embryonic stem (ES) cells. While Geminin knockdown does not affect the ability of ES cells to maintain or exit pluripotency, we found that it significantly impairs their ability to acquire a neural fate. Conversely, Geminin overexpression promotes neural gene expression, even in the presence of growth factor signaling that antagonizes neural transcriptional responses. These data demonstrate that Geminins activity contributes to mammalian neural cell fate acquisition. We investigated the mechanistic basis of this phenomenon and found that Geminin maintains a hyperacetylated and open chromatin conformation at neural genes. Interestingly, recombinant Geminin protein also rapidly alters chromatin acetylation and accessibility even when Geminin is combined with nuclear extract and chromatin in vitro. These findings define a novel activity for Geminin in regulation of chromatin structure. Together, these data support a role for Geminin as a cell intrinsic regulator of neural fate acquisition that promotes expression of neural genes by regulating chromatin accessibility and histone acetylation.
Geminin promotes neural fate acquisition of embryonic stem cells by maintaining chromatin in an accessible and hyperacetylated state.
Specimen part, Treatment
View Samples