Hepatocellular carcinoma (HCC) is the second most common cause of cancer related death. NAFLD affects a large proportion of the US population. Its incidence and prevalence are increasing to epidemic proportions around the world and is known to increase the risk of HCC. We studied how intrahepatic lipids affect adaptive immunity and HCC development in different murine models of NASH and HCC. Linoleic acid, a fatty acid found in NAFLD caused a selective loss of hepatic CD4+ but not CD8+ T cells leading to accelerated hepatocarcinogenesis. CD4+ T cells were more dependent on oxidative phosphorylation for energy source than CD8+ T cells, and disruption of oxidative phosphorylation by linoleic acid caused more severe damage in CD4+ T cells leading to selective loss of these cells. In vivo blockade of ROS using n-acetylcysteine reversed the NASH-induced hepatic CD4+ T cell decrease and delayed NASH-promoted HCC. Our results provide a new link between lipid metabolism and impaired anti-tumor surveillance.
NAFLD causes selective CD4(+) T lymphocyte loss and promotes hepatocarcinogenesis.
No sample metadata fields
View SamplesIn this study, mRNA expression profiles of 113 primary untreated human neuroblastoma samples were compared with the aim to identify prognostic exon and gene sets as well as parameters associated with alternative exon use. The primary neuroblastoma specimens were from tumor banks in Cologne or Essen, Germany, Ghent, Belgium and Valencia, Spain. All patients were diagnosed between 1998 and 2007 and treated according to the German Neuroblastoma trials NB97, NB 2004 or the SIOPEN protocol.
Smac mimetic LBW242 sensitizes XIAP-overexpressing neuroblastoma cells for TNF-α-independent apoptosis.
Specimen part, Treatment
View SamplesLineage specific transcription factors (TF) define and reinforce tissue specific cell types. For instance, stable endoderm progenitors were established from human ESC by constitutive expression of SOX7 or SOX17. We hypothesized that combinatorial expression of OCT4, SOX2 and KLF4together with the neural-lineage TF, Zic3, could directly convert fibroblasts into stable neuronal progenitor cells (NPC). Ensuing colonies predominantly expressed genes present in human NPC, as demonstrated by genome wide transcriptional analysis, and this phenotype could be maintained through many passages. When injected in immunodeficient mice, Zic3-induced (Zi)NPC form neuroendocrine tumors without evidence of mesoderm or endoderm. In vitro, ZiNPC spontaneously differentiated to neural cells only, and could be differentiated into astrocytes, oligodendrocytes and motor neuron lineages. In conclusion, addition of Zic3 during induced pluripotent stem cell (iPSC) generation, allows for the derivation of stable neural lineage progenitor cells.
Zic3 induces conversion of human fibroblasts to stable neural progenitor-like cells.
Sex, Specimen part, Disease, Cell line, Treatment
View SamplesTo identify a panel of Seninel Lymph Node (SLN) genes to aid in risk stratification of patients with tumor-positive SLN, total SLN RNA from 97 SLN-positive melanoma patients were chosen from the Sunbelt Melanoma Trial. Microarray experiments were performed to screen SLN genes in recurrence (=39) versus non-recurrence (=58) group. We identified 20 differentially expressed SLN genes in the recurrence vs. the non-recurrence group.
Sentinel Lymph Node Genes to Predict Prognosis in Node-Positive Melanoma Patients.
Specimen part
View SamplesMalignant melanoma is a complex genetic disease and the most aggressive form of skin cancer. Melanoma progression and metastatic dissemination fundamentally relies on the process of angiogenesis. Melanomas produce an array of angiogenic modulators that mediate pathological angiogenesis. Such tumor-associated modulators arbitrate the enhanced proliferative, survival and migratory responses exhibited by endothelial cells, in the hypoxic tumor environment. The current study focuses on melanoma-induced survival of endothelial cells under hypoxic conditions. Melanoma conditioned media were capable of enabling prolonged endothelial cell survival under hypoxia, in contrast with the conditioned media derived from melanocytes, breast and pancreatic tumors. To identify the global changes in gene expression and further characterize the pro-survival pathway induced in endothelial cells, we performed microarray analysis on endothelial cells treated with melanoma conditioned medium under normoxic and hypoxic conditions.
Melanomas prevent endothelial cell death under restrictive culture conditions by signaling through AKT and p38 MAPK/ ERK-1/2 cascades.
Specimen part
View SamplesAnalysis of ex vivo isolated lymphatic endothelial cells from the dermis of patients to define type 2 diabetes-induced changes. Results preveal aberrant dermal lymphangiogenesis and provide insight into its role in the pathogenesis of persistent skin inflammation in type 2 diabetes.
Enhanced lymph vessel density, remodeling, and inflammation are reflected by gene expression signatures in dermal lymphatic endothelial cells in type 2 diabetes.
Sex, Age, Specimen part, Disease
View SamplesPurpose: To compare the transcriptome profiles (RNA-seq) of cultured human epididymis cells and tissue from the caput, corpus and cauda regions of the human epididymis. Methods: Human epididymis tissue was obtained with Institutional Review Board approval from 3 patients (UC05, UC06, UC09, range: 22 - 36 years) undergoing inguinal radical orchiectomy for a clinical diagnosis of testicular cancer. None of the epididymides had extension of the testicular cancer. The three anatomical regions: caput, corpus and cauda, were separated and segments of each snap frozen. Adult human epididymis epithelial (HEE) cultures were also established from tissue. RNA was extracted from both tissue and cultured HEE cells and RNA-seq libraries prepared (TruSeq RNA Sample Preparation Kit v2, Low-Throughput protocol, Illumina). Libraries were sequenced on Illumina HiSeq2500 machines. Data were analyzed using TopHat and Cufflinks. Results: Libraries generated ~19-39 million reads per library from the cells (95-99% mapping to the human genome) and ~14-39 million reads from the tissue samples (84-99% mapped). Raw reads were aligned to the genome with Tophat and gene expression values were processed using Cufflinks as Fragments Per Kilobase per Million mapped fragments (FPKM). FPKM values were subject to principle component analysis, which revealed that though caput, corpus and cauda cell samples respectively from UC05, UC06 and UC09 clustered together. RNA-seq data from the 3 biological replicas (UC05, UC06 and UC09) of caput, corpus and cauda were pooled for further analysis. Cufflinks was used to determine differentially expressed genes (DEGs) between caput, corpus and cauda cells, combined from the 3 donors. The gene expression profiles of corpus and cauda are remarkably similar and both differ from the caput to a similar degree. We identified ~40 genes differentially expressed between corpus and cauda and more than 1600 DEGs between caput and cauda. The DEGs for each comparison (caput and corpus/cauda) were analysed using a gene ontology process enrichment analysis (DAVID, Huang et al., NAR 2009;37:1-13, Huang et al., 2009 Nat Prot 4:44-57). Conclusions: Here we describe an in depth analysis of the gene expression repertoire of primary cultures of epithelial cells and intact tissues from each region of the adult human epididymis. These data will be valuable to decipher pathways of normal epididymis function and aspects of epididymis disease that cause male infertility. Overall design: RNA-seq was performed on libraries generated from caput, corpus and cauda-derived cultured cells (passage 2 or 3) from 3 donors and on caput, corpus and cauda tissue from 2 of the same donors. Donor age range: 22 - 36 years.
Expression profiles of human epididymis epithelial cells reveal the functional diversity of caput, corpus and cauda regions.
No sample metadata fields
View SamplesHNF1a and HNF1ß recognize the same DNA consensus sequence in the genome, to which they bind as homodimers or heterodimers. Both factors share a high degree of homology their DNA binding and dimerization (N-terminus) regions but have a more divergent C-terminal transactivation domain. HNF1ß is essential for the generation of a functional male reproductive tract in mice and genital tract abnormalities are evident in humans with recessive mutations in HNF1ß. The functions of HNF1a and HNF1ß have been studied in epithelia from other several tissues (liver, kidney, intestine, and pancreas) but their role in the adult human epididymis epithelium (HEE) remains unexplored. We established that HNF1a/ß are expressed in caput HEE cells and are predicted to occupy cis-regulatory elements in these cells. To investigate the contribution of HNF1 in controlling gene expression in caput cells we performed siRNA-mediated depletion of HNF1a and HNF1ß together, followed by RNA-seq analysis. Three replicas of caput cells were transfected with the specific siRNAs or with a non-targeting control siRNA. RNA-seq after HNF1 depletion showed significant alterations in the expression of genes encoding ion channels and exchangers that are involved in controlling the luminal environment in the caput epididymis. Overall design: mRNA profiles from Caput HEE cells transfected with negative control (NC) or HNF1alpha and HNF1beta siRNA, in triplicate.
HNF1 regulates critical processes in the human epididymis epithelium.
No sample metadata fields
View SamplesPurpose: To evaluate the presence of a gene expression signature present before treatment as predictive of response to treatment with MAGEA3
Predictive gene signature in MAGE-A3 antigen-specific cancer immunotherapy.
Specimen part
View SamplesHistone deacetylase 1 (HDAC1) is an enzyme that promotes deacetylation of acetylated lysine residues in histones and other proteins. Histone acetylation is often associated with gene activation and expression. Los of HDAC1 leads to severe problems in development and proliferation. Moreover, it seems to be the major histone deacetylase in mouse embryonic stem cells.
Negative and positive regulation of gene expression by mouse histone deacetylase 1.
No sample metadata fields
View Samples