This SuperSeries is composed of the SubSeries listed below.
Dietary methanol regulates human gene activity.
Sex, Age, Specimen part, Subject
View SamplesMethanol (MeOH) is considered to be a poison in humans because of the alcohol dehydrogenase (ADH)-mediated conversion of MeOH into toxic formaldehyde (FA). Our recent genome-wide analysis of the mouse brain demonstrated that an increase in endogenous MeOH after ADH inhibition led to a significant increase in the plasma MeOH concentration and the modification of mRNA synthesis. These findings suggest endogenous MeOH involvement in homeostasis regulation by controlling mRNA levels. Here, we demonstrate directly that study volunteers displayed increasing concentrations of MeOH and FA in their blood plasma when consuming citrus pectin, ethanol and red wine. A microarray analysis of white blood cells (WBC) in volunteers after pectin intake showed various responses for 30 differentially regulated mRNAs. Most of the mRNAs were somehow involved in the pathogenesis of Alzheimer's disease (AD). There was also a decreased synthesis of hemoglobin mRNA, HBA and HBB, the presence of which in WBC RNA was not a result of red blood cells contamination because erythrocyte-specific marker genes did not show significant change. A qRT-PCR analysis of volunteer WBC after pectin and red wine intake confirmed the complicated dependence between plasma MeOH content and the mRNA accumulation of previously identified genes, namely GAPDH and SNX27, and MME, SORL1, DDIT4, HBA and HBB genes revealed in this study. We hypothesized that human plasma MeOH, which is replenished from endogenous and exogenous sources (diet), has an impact on the WBC mRNA levels of genes involved in AD pathogenesis and signaling.
Dietary methanol regulates human gene activity.
Specimen part, Subject
View SamplesMethanol (MeOH) is considered to be a poison in humans because of the alcohol dehydrogenase (ADH)-mediated conversion of MeOH into toxic formaldehyde (FA). Our recent genome-wide analysis of the mouse brain demonstrated that an increase in endogenous MeOH after ADH inhibition led to a significant increase in the plasma MeOH concentration and the modification of mRNA synthesis. These findings suggest endogenous MeOH involvement in homeostasis regulation by controlling mRNA levels. Here, we demonstrate directly that study volunteers displayed increasing concentrations of MeOH and FA in their blood plasma when consuming citrus pectin, ethanol and red wine. A microarray analysis of white blood cells (WBC) in volunteers after pectin intake showed various responses for 30 differentially regulated mRNAs. Most of the mRNAs were somehow involved in the pathogenesis of Alzheimer's disease (AD). There was also a decreased synthesis of hemoglobin mRNA, HBA and HBB, the presence of which in WBC RNA was not a result of red blood cells contamination because erythrocyte-specific marker genes did not show significant change. A qRT-PCR analysis of volunteer WBC after pectin and red wine intake confirmed the complicated dependence between plasma MeOH content and the mRNA accumulation of previously identified genes, namely GAPDH and SNX27, and MME, SORL1, DDIT4, HBA and HBB genes revealed in this study. We hypothesized that human plasma MeOH, which is replenished from endogenous and exogenous sources (diet), has an impact on the WBC mRNA levels of genes involved in AD pathogenesis and signaling.
Dietary methanol regulates human gene activity.
Sex, Age, Specimen part, Subject
View SamplesMethanol (MeOH) is considered to be a poison in humans because of the alcohol dehydrogenase (ADH)-mediated conversion of MeOH into toxic formaldehyde (FA). Our recent genome-wide analysis of the mouse brain demonstrated that an increase in endogenous MeOH after ADH inhibition led to a significant increase in the plasma MeOH concentration and the modification of mRNA synthesis. These findings suggest endogenous MeOH involvement in homeostasis regulation by controlling mRNA levels. Here, we demonstrate directly that study volunteers displayed increasing concentrations of MeOH and FA in their blood plasma when consuming citrus pectin, ethanol and red wine. A microarray analysis of white blood cells (WBC) in volunteers after pectin intake showed various responses for 30 differentially regulated mRNAs. Most of the mRNAs were somehow involved in the pathogenesis of Alzheimer's disease (AD). There was also a decreased synthesis of hemoglobin mRNA, HBA and HBB, the presence of which in WBC RNA was not a result of red blood cells contamination because erythrocyte-specific marker genes did not show significant change. A qRT-PCR analysis of volunteer WBC after pectin and red wine intake confirmed the complicated dependence between plasma MeOH content and the mRNA accumulation of previously identified genes, namely GAPDH and SNX27, and MME, SORL1, DDIT4, HBA and HBB genes revealed in this study. We hypothesized that human plasma MeOH, which is replenished from endogenous and exogenous sources (diet), has an impact on the WBC mRNA levels of genes involved in AD pathogenesis and signaling.
Dietary methanol regulates human gene activity.
Sex, Age, Specimen part
View SamplesThe mechanisms underlying natural variation in lifespan and ageing rate remain largely unknown.
Transcriptome analysis of a long-lived natural Drosophila variant: a prominent role of stress- and reproduction-genes in lifespan extension.
Sex, Specimen part
View SamplesComparison between cell lines from 9 different cancer tissue of origin types (Breast, Central Nervous System, Colon, Leukemia, Melanoma, Non-Small Cell Lung, Ovarian, Prostate, Renal) from NCI-60 panel
Exon array analyses across the NCI-60 reveal potential regulation of TOP1 by transcription pausing at guanosine quartets in the first intron.
Sex, Age, Specimen part, Cell line
View SamplesComparison between cell lines from 9 different cancer tissue of origin types (Breast, Central Nervous System, Colon, Leukemia, Melanoma, Non-Small Cell Lung, Ovarian, Prostate, Renal) from NCI-60 panel.
Topoisomerase I levels in the NCI-60 cancer cell line panel determined by validated ELISA and microarray analysis and correlation with indenoisoquinoline sensitivity.
Sex, Age, Specimen part, Cell line
View SamplesWe profiled spinal cord tissue at the site of a moderate contusion injury at the level of the thoracic spinal cord
TrkB.T1 contributes to neuropathic pain after spinal cord injury through regulation of cell cycle pathways.
Age, Specimen part, Time
View SamplesVon Willebrand factor is a paracrine/autocrine regulator of human mesenchymal stem cell adhesion to distressed/apoptotic endothelial cells.
Von willebrand factor increases endothelial cell adhesiveness for human mesenchymal stem cells by activating p38 mitogen-activated protein kinase.
Specimen part
View SamplesRNA expression was measured by RNA-seq in Drosophila ML-DmBG3-c2 cells depleted for proteins involved in sister chromatid cohesion, and in developing third instar wing discs with or withough brca2 gene mutations Overall design: RNA expression in depleted cells was compared to mock treated cells and RNA expression in wing discs from brca2 mutant Drosophila was compared to expression in wing discs without brca2 mutations This series includes mock RNAi treated samples re-used from GSE100547.
Brca2, Pds5 and Wapl differentially control cohesin chromosome association and function.
Specimen part, Cell line, Subject
View Samples