The PAT-seq approach was utilised to determine the gene expression changes over the cell-cycle of wildtype and delta-set1 yeast strains. The cell were synchronised by alpha-factor arrest and cell-cycle release Overall design: Analysis gene expresson across the S. cerevisiae cell cycle.
Coordination of Cell Cycle Progression and Mitotic Spindle Assembly Involves Histone H3 Lysine 4 Methylation by Set1/COMPASS.
Cell line, Subject, Time
View SamplesIschemia/reperfusion injuries is a known complication to hepatic surgery. Ischemic pre- (IPC) and postconditioning (IPO) protects the liver against ischemia/reperfusion-injuries. Expression profiling were performed on liver biopsies seeking to identify molecular mediators of the protective properties.
Ischemic pre- and postconditioning has pronounced effects on gene expression profiles in the rat liver after ischemia/reperfusion.
Sex
View SamplesIdentification of genes enriched in the presumptive primary mouth. Dissected tissues from the primary mouth anlage and two other anterior regions for comparison, the anterior dorsal and ventral plus cement gland.
The Wnt antagonists Frzb-1 and Crescent locally regulate basement membrane dissolution in the developing primary mouth.
No sample metadata fields
View SamplesWe analyzed the transcriptome of the C57BL/6J mouse hypothalamus, hippocampus, neocortex, and cerebellum to determine estrous cycle-specific changes in these four brain regions. We found almost 16,000 genes are present in one or more of the brain areas but only 210 genes, ~1.3%, are significantly changed as a result of the estrous cycle. The hippocampus has the largest number of differentially expressed genes (DEGs) (82), followed by the neocortex (76), hypothalamus (63), and cerebellum (26). Most of these DEGs (186/210) are differentially expressed in only one of the four brain regions. A key finding is the unique expression pattern of growth hormone (Gh) and prolactin (Prl). Gh and Prl are the only DEGs to be expressed during only one stage of the estrous cycle (metestrus). To gain insight into the function of the DEGs, we examined gene ontology and phenotype enrichment and found significant enrichment for genes associated with myelination, hormone stimulus, and abnormal hormone levels. Additionally, 61 of the 210 DEGs are known to change in response to estrogen in the brain. 50 genes differentially expressed as a result of the estrous cycle are related to myelin and oligodendrocytes and 12 of the 63 DEGs in the hypothalamus are oligodendrocyte- and myelin-specific genes. This transcriptomic analysis reveals that gene expression in the female mouse brain is remarkably stable during the estrous cycle and demonstrates that the genes that do fluctuate are functionally related. Overall design: Hypothalamus, hippocampus, neocortex, and cerebellum mRNA from adult female C57BL/6J (B6) mice were analyzed by RNA sequencing of 3 biological replicates for each of the 4 stages of the estrous cycle using an Illumina HiSeq 2500
The stability of the transcriptome during the estrous cycle in four regions of the mouse brain.
Sex, Age, Specimen part, Cell line, Subject
View SamplesOverarching aim is to achieve a greater understanding of the control of progenitor cells within the adult human retina within the normal and diseased retinal microenvironment. Specifically we will assess via our experimental designs: (i) the control of CD133+ retinal cell populations that display mitotic potential and differentiation and
CD133+ adult human retinal cells remain undifferentiated in Leukaemia Inhibitory Factor (LIF).
Specimen part
View SamplesThe transcription factors Mixer and Sox17beta have well characterized roles in endoderm specification during Xenopus embryogenesis. In order to more thoroughly understand the mechanisms by which these endodermal regulators act, we expressed Mixer and Sox17beta in nave ectodermal tissue and, using oligonucleotide-based microarrays, compared their genomic transcriptional profile to that of unaffected tissue. Using this novel approach, we identified 71 transcripts that are upregulated by Mixer or Sox17beta, 63 of which have previously uncharacterized roles in endoderm development. Furthermore, an in situ hybridization screen using antisense probes for several of these clones identified six targets of Mixer and/or Sox17beta that are expressed in the endoderm during gastrula stages, providing new and regional markers of the endoderm. Our results contribute further insight into the functions of Mixer and Sox17beta and bring us closer to understanding at the molecular level the pathways that regulate endoderm development.
Genomic profiling of mixer and Sox17beta targets during Xenopus endoderm development.
Sex, Specimen part
View SamplesConversion of fibroblasts to functional cardiomyocytes represents a potential approach for restoring cardiac function following myocardial injury, but the technique thus far has been slow and inefficient. To improve the efficiency of reprogramming fibroblasts to cardiac-like myocytes (iCMs) by cardiac transcription factors (Gata4, Hand2, Mef2c, and Tbx5=GHMT), we screened 192 protein kinases and discovered that Akt/protein kinase B dramatically accelerates and amplifies this process. Approximately 50% of reprogrammed fibroblasts displayed spontaneous beating after three weeks of induction by Akt plus GHMT. Furthermore, addition of Akt1 to GHMT evoked a more mature cardiac phenotype for iCMs, as seen by enhanced polynucleation, cellular hypertrophy, gene expression, and metabolic reprogramming. Igf1 and Pi3 kinase acted upstream of Akt, whereas mTORC1 and Foxo3a acted downstream of Akt to influence fibroblast-to-cardiomyocyte reprogramming. These findings provide new insights into the molecular basis of cardiac reprogramming and represent an important step toward further application of this technique. Overall design: We performed RNA-Seq using either isolated adult mouse ventricular cardiomyocytes (CMs) or MEFs treated for three weeks with empty vector, GHMT (iCMs cell sorted using aMHC-GFP before RNA-Seq), or AGHMT (iCMs cell sorted using aMHC-GFP before RNA-Seq).
Akt1/protein kinase B enhances transcriptional reprogramming of fibroblasts to functional cardiomyocytes.
No sample metadata fields
View SamplesIdentify genes like Ifit1 which are induced in L929 cells but not L929 cells expressing ectopic IRF8
Interferon Regulatory Factor 8 (IRF8) Impairs Induction of Interferon Induced with Tetratricopeptide Repeat Motif (IFIT) Gene Family Members.
No sample metadata fields
View SamplesBud endodormancy induction response of two genotypes (Seyval a hybrid white wine grape and V. riparia, PI588259 a native north american species) was compared under long (15h) and short (13h) photoperiod. Three separate replicates (5 plants/replicate) were treated to generate paradormant (LD) and same aged endodormancy-induced (SD) buds for transcriptomic, proteomic and metabolomic analysis. Potted, spur-pruned two to six-year-old vines were removed from cold storage (Seyval 3-19-07; V. riparia 3/26/07) and grown under a LD (15 h) at 25/20 + 3C day/night temperatures (D/N). When vines reached 12-15 nodes (3-25-07) they were randomized into LD or SD treatments with 25/20 + 3C D/N in climate controlled greenhouses with automated photoperiod system (VRE Greenhouse Systems). Three replications (5 vines/replication) were harvested between 5/07-6/07 and then again in 5/08-6/08 for a total of six replications. All treatments are repeated at the same time every year and harvested at the same time of day each year to minimize biological noise. At 1, 3, 7, 14, 21, 28 and 42 days of LD and SD treatment, buds were harvested from nodes 3 to 12 of each separate replicate, immediately frozen in liquid nitrogen, and placed at -80C for future RNA, protein and metabolite extraction. These time points encompass early reversible phases as well as key time points during transition to irreversible endodormancy development. After photoperiod treatments and bud harvests, all pruned vines were returned to LD and monitored for bud endodormancy. The endodormant vines were identified after 28 days and moved to cold storage. The nondormant vines were allowed to grow again and induced into dormancy at a later date. Acknowledgement:This study was funded by NSF Grant DBI0604755 and funds from the South Dakota Agriculture Experiment Station. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Anne Fennell. The equivalent experiment is VV10 at PLEXdb.]
Differential floral development and gene expression in grapevines during long and short photoperiods suggests a role for floral genes in dormancy transitioning.
Age, Specimen part
View SamplesMammalian spermatogenesis is a complex biological process that occurs within a highly organized tissue, the seminiferous epithelium. The coordinated maturation of spermatogonia, spermatocytes and spermatids suggests the existence of precise programs of gene expression in these cells as well as in their neighboring somatic Sertoli cells. The objective of this study was to elucidate genes encoding the proteins that execute these programs. Rat seminiferous tubules at stages I, II-III, IV-V, VI, VIIa,b, VIIc,d, VIII, IX-XI, XII, XIII-XIV of the cycle were isolated by microdissection and Sertoli cells, spermatogonia plus early spermatocytes, pachytene spermatocytes and spermatids were purified from enzymatically-dispersed testes. Microarray analysis using Rat Genome 230 2.0 arrays identified a total of 16,971 probe sets that recognized transcripts. A comparison with the transcriptome of other tissues identified 398 testis-specific probe sets, which therefore are potential targets for the development of new contraceptives. Sequential waves of cell and stage-specific gene expression are associated with progression of germ cells through the stages of the cycle of the seminiferous epithelium and 1612 probe sets recognized transcripts whose expressions varied at least 4-fold across the stages of the cycle. Pathway analyses reveal that entire biological processes are regulated cyclically in testicular cells. Important among these are cell cycle and DNA repair. Thus, stage-specific gene expression is a widespread and fundamental characteristic of spermatogenic cells and Sertoli cells.
Stage-specific gene expression is a fundamental characteristic of rat spermatogenic cells and Sertoli cells.
No sample metadata fields
View Samples