MicroRNAs (miRNAs) represent a class of small non-coding RNAs that control gene expression by targeting mRNAs and triggering either translation repression or RNA degradation. Emerging evidence suggests the potential involvement of altered regulation of miRNA in the pathogenesis of cancers, and these genes are thought to function as both tumor suppressors and oncogenes. Using microRNA microarrays, we identify several miRNAs aberrantly expressed in human ovarian cancer tissues and cell lines. miR-221 stands out as a highly elevated miRNA in ovarian cancer, while miR-21 and several members of the let-7 family are found downregulated. Public databases were used to reveal potential targets for the highly differentially expressed miRNAs. In order to experimentally identify transcripts whose stability may be affected by the differentially expressed miRNAs, we transfected precursor miRNAs into human cancer cell lines and used oligonucleotide microarrays to examine changes in the mRNA levels.
MicroRNA expression and identification of putative miRNA targets in ovarian cancer.
Sex
View SamplesMicroarry from Treg with conditional knockout of Usp7
Ubiquitin-specific Protease-7 Inhibition Impairs Tip60-dependent Foxp3+ T-regulatory Cell Function and Promotes Antitumor Immunity.
Specimen part
View SamplesMast cells originate from the bone marrow and develop into c-kit+ FcRI+ cells. As both mast cell progenitors and mature mast cells express these cell surface markers, ways validated to distinguish between the two maturation forms with flow cytometry have been lacking.
Distinguishing Mast Cell Progenitors from Mature Mast Cells in Mice.
Specimen part, Disease
View SamplesThe objective of this study was to compare the transcriptional repertoire of mature human neutrophils before and after GM-CSF treatment by using oligonucleotide microarrays.
RhoH/TTF negatively regulates leukotriene production in neutrophils.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Early B cell factor 1 regulates adipocyte morphology and lipolysis in white adipose tissue.
Specimen part
View SamplesTo investgate the role of EBF1 in human adipocyte, we performed global expression profiling in human adipocytes transfected with siRNA targeting EBF1.
Early B cell factor 1 regulates adipocyte morphology and lipolysis in white adipose tissue.
Specimen part
View SamplesPheochromocytomas, catecholamine-secreting tumors of neural crest origin, are frequently hereditary. However, the molecular basis of the majority of these tumors is unknown. We identified the transmembrane-encoding gene TMEM127 on chromosome 2q11 as a new pheochromocytoma susceptibility gene. In a cohort of 103 samples, we detected truncating germline TMEM127 mutations in approximately 30% of familial tumors and about 3% of sporadic-appearing pheochromocytomas without a known genetic cause. The wild-type allele was consistently deleted in tumor DNA, suggesting a classic mechanism of tumor suppressor gene inactivation. Pheochromocytomas with mutations in TMEM127 are transcriptionally related to tumors bearing NF1 mutations and, similarly, show hyperphosphorylation of mammalian target of rapamycin (mTOR) effector proteins. Accordingly, in vitro gain-of-function and loss-of-function analyses indicate that TMEM127 is a negative regulator of mTOR. TMEM127 dynamically associates with the endomembrane system and colocalizes with perinuclear (activated) mTOR, suggesting a subcompartmental-specific effect. Our studies identify TMEM127 as a tumor suppressor gene and validate the power of hereditary tumors to elucidate cancer pathogenesis.
Germline mutations in TMEM127 confer susceptibility to pheochromocytoma.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Adipose tissue microRNAs as regulators of CCL2 production in human obesity.
Sex, Age, Specimen part, Subject
View SamplesWe used an unbiased systems biology approach to study the regulation of gene expression in human adipose tissue focusing on inflammation. We show that microRNAs play a major role as regulators of CCL2 production in obesity.
Adipose tissue microRNAs as regulators of CCL2 production in human obesity.
Age, Specimen part
View SamplesWe used an unbiased systems biology approach to study the regulation of gene expression in human adipose tissue focusing on inflammation. We show that microRNAs play a major role as regulators of CCL2 production in obesity.
Adipose tissue microRNAs as regulators of CCL2 production in human obesity.
Sex, Age, Specimen part, Subject
View Samples