Analysis of gene expression (RNAseq) from isolated kidney macrophages injetced i.v. with PBS Overall design: C57BL/6J mice were injected i.v. with PBS. One hour after injection, kidney macrophages were isolated (sorted by FACS) for gene expression analysis.
Immune Monitoring of Trans-endothelial Transport by Kidney-Resident Macrophages.
Cell line, Subject
View SamplesTissue resident macrophages are functionally diverse cells that share an embryonic mesodermal origin. However, the mechanism(s) that control their specification remain unclear. We performed transcriptional, molecular and in situ spatio-temporal analyses of macrophage development in mice. We report that Erythro-Myeloid Progenitors generate pre-macrophages (pMacs) that simultaneously colonize the head and caudal embryo from embryonic day (E)9.5 in a chemokine-receptor dependent manner, to further differentiate into tissue F4/80+ macrophages. The core macrophage transcriptional program initiated in pMacs, is rapidly diversified in early macrophages as expression of transcriptional regulators becomes tissue-specific. For example, the preferential expression of the transcriptional regulator Id3 initiated in early fetal liver macrophages appears critical for Kupffer cell differentiation, as inactivation of Id3 causes a selective Kupffer cell deficiency that persists in adults. We propose that colonization of developing tissues by differentiating macrophages is immediately followed by their specification as they establish residence, hereby generating the macrophage diversity observed in post-natal tissues. Overall design: RNA-sequencing of sorted macrophage cell populations (Mac) and progenitors (EMP, pMac) from various tissues and collected at different time points, including technical and biological replicates
Specification of tissue-resident macrophages during organogenesis.
Specimen part, Subject, Time
View SamplesTissue resident macrophages are functionally diverse cells that share an embryonic mesodermal origin. However, the mechanism(s) that control their specification remain unclear. We performed transcriptional, molecular and in situ spatio-temporal analyses of macrophage development in mice. We report that Erythro-Myeloid Progenitors generate pre-macrophages (pMacs) that simultaneously colonize the head and caudal embryo from embryonic day (E)9.5 in a chemokine-receptor dependent manner, to further differentiate into tissue F4/80+ macrophages. The core macrophage transcriptional program initiated in pMacs, is rapidly diversified in early macrophages as expression of transcriptional regulators becomes tissue-specific. For example, the preferential expression of the transcriptional regulator Id3 initiated in early fetal liver macrophages appears critical for Kupffer cell differentiation, as inactivation of Id3 causes a selective Kupffer cell deficiency that persists in adults. We propose that colonization of developing tissues by differentiating macrophages is immediately followed by their specification as they establish residence, hereby generating the macrophage diversity observed in post-natal tissues. Overall design: RNA-sequencing of sorted macrophage cell populations (Mac) and progenitors (EMP, pMac) from various tissues and collected at different time points, including technical and biological replicates
Specification of tissue-resident macrophages during organogenesis.
Specimen part, Subject, Time
View SamplesKATP opposes depolarization of cells in the heart, smooth muscle, and other tissues by permitting the efflux of potassium ions and this efflux is evidently required to prevent unopposed vasoconstriction and insufficiency of coronary artery blood flow triggered by one or more cytokines induced in response to LPS. The cytokine(s) involved must elicit a dysfunctional response in the Kir6.1-deficient environment, and to gain further insight into the effects of the mutation, we examined the transcriptional status of whole heart, isolated from normal C57BL/6J mice or KcnJ8Md/Md mice, before and after injection of 1 g of LPS
ATP-sensitive potassium channels mediate survival during infection in mammals and insects.
No sample metadata fields
View SamplesMurine Cytomegalovirus (MCMV) infection leads to early activation of various immune cells, including B and T lymphocytes, before the actual initiation of antigen-specific adaptive immunity. This activation is partly driven by innate cytokines, including type I interferon (IFN), which are induced early after infection. The objective of this study was to address the role of type I IFN in shaping early/innate B and T cell responses to a primary acute viral infection.
Plasmacytoid, conventional, and monocyte-derived dendritic cells undergo a profound and convergent genetic reprogramming during their maturation.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
WNT5A inhibits metastasis and alters splicing of Cd44 in breast cancer cells.
Cell line
View SamplesA highly metastatic breast cancer cell line, 4T1, was used to generate stable Wnt5a expressing and vector only control cells. Cells were generated using lentivirus infection and selection with blasticidin. Expression of Wnt5a was confirmed using western blot. Cell behaviour was characterized. Wnt5a expressing cells exhibited reduced migration in a transwell assay and reduced metastasis in a tail vein injection assay. Growth was not significantly affected.
WNT5A inhibits metastasis and alters splicing of Cd44 in breast cancer cells.
Cell line
View SamplesTo investigate differential gene expression that might account for the differing glomerular phenotype of NPHS2-Cre +/+ mice when compared with wild-type control, including altered GBM thickness, loss of normal foot process morphology, and decrease in podocyte number, RNA sequencing analysis was performed on glomeruli extracted from both NPHS2-Cre +/+ and wild-type control mice. Overall design: Following isolation of glomeruli using Dynabeads from NPHS2-Cre +/+ and wild-type control mice (n=2 biological replicates per genotype, singly isolated), total RNA was extracted and RNA samples were submited for sample preparation and sequencing.
Podocyte-specific expression of Cre recombinase promotes glomerular basement membrane thickening.
Sex, Age, Specimen part, Cell line, Subject
View SamplesIt is well known that both recipient cells and donor nuclei demonstrate a mitotic advantage as observed in the traditional reprogramming with somatic cell nuclear transfer (SCNT). However, It is not known whether a specific mitotic factor plays a critical role in reprogramming. Here we identify an isoform of human bromodomain-containing 3 (BRD3), BRD3R (BRD3 with Reprogramming activity), as a reprogramming factor. BRD3R positively regulates mitosis during reprogramming, upregulates a large set of mitotic genes at early stages of reprogramming, and associates with mitotic chromatin. Interestingly, a set of the mitotic genes upregulated by BRD3R constitutes a pluripotent molecular signature. The two BRD3 isoforms display differential binding to acetylated histones. Our results suggest a molecular interpretation for the mitotic advantage in reprogramming, and show that mitosis may be a driving force of reprogramming. Overall design: Human BJ cells transduced with lentiviral particles of the conventional reprogramming factors (OCT3/4, SOX2 and KLF4) were used as controls. Two types of controls were used: 1) BJ transduced with OSK (OCT4, SOX2 and KFL4) viruses; 2) BJ cells transduced with OSK plus GFP viruses. Experimental treatment was BJ cells transduced with OSK plus BRD3R viruses. RNA was extracted from cells at day 3 of reprogramming because the reprogramming cells are still homogeneous and transgenes are well expressed at this time point.
The acetyllysine reader BRD3R promotes human nuclear reprogramming and regulates mitosis.
No sample metadata fields
View SamplesRad21 is a subunit of cohesin. The main function of cohesin is to hold replicated chromosomes together until cells divide, but it also plays a role in gene expression. To find out which genes might be regulated by cohesin, a study was conducted to look for global changes in gene expression in zebrafish embryos lacking cohesin component Rad21.
Positive regulation of c-Myc by cohesin is direct, and evolutionarily conserved.
Specimen part, Time
View Samples