This data was used to determine levels of BRCA1 and BRCA2 in primary human leukemia samples. Samples were determined to be high BRCA1 and/or BRCA2 or low BRCA1 and/or BRAC2.
Personalized synthetic lethality induced by targeting RAD52 in leukemias identified by gene mutation and expression profile.
No sample metadata fields
View SamplesA comparison of global gene expression between rigorously defined stem and progenitor cells from patients with chronic myeloid leukaemia (CML) in chronic (CP), accelerated (AP) and blastic (BC) phase and similar populations isolated from normal volunteers.
Personalized synthetic lethality induced by targeting RAD52 in leukemias identified by gene mutation and expression profile.
Specimen part, Disease, Disease stage, Subject
View SamplesTo understand the fruit changes and mechanisms involved in the compatible grapevine-virus interaction, we analyzed the berry transcriptome in two stages of development (veraison and ripening) in the red wine cultivar Cabernet Sauvignon infected with Grapevine leaf-roll-associated virus-3 (GLRaV-3). Analysis of global gene expression patterns indicate incomplete berry maturation in infected berries as compared to uninfected fruit suggesting viral infection interrupts the normal berry maturation process.
Compatible GLRaV-3 viral infections affect berry ripening decreasing sugar accumulation and anthocyanin biosynthesis in Vitis vinifera.
Age, Specimen part
View SamplesThe intestine is composed of an epithelial layer, containing rapidly proliferating cells that mature into two distinct anatomic regions, the small and the large intestine. Although previous studies have identified stem cells as the cell-of-origin for the whole intestine, no studies have compared stem cells derived from the small and large intestine. Here, we report intrinsic differences between these two populations of cells. Primary epithelial cells isolated from human fetal small and large intestine and expanded with Wnt agonist, R-spondin 2, displayed differential expression of stem cell markers and separate hierarchical clustering of gene expression involved in differentiation, proliferation and disease pathways. Using a three-dimensional in vitro differentiation assay, single cells derived from small and large intestine formed distinct organoid architecture with cellular hierarchy similar to that found in primary tissue. Our characterization of human fetal intestinal stem cells defies the classical definition proposed by most where small and large intestine are repopulated by an identical epithelial stem cell and raises the question of the importance of intrinsic and extrinsic cues in the development of intestinal diseases.
Distinct human stem cell populations in small and large intestine.
Specimen part
View SamplesRecent studies have identified intracellular metabolism as a fundamental determinant of macrophage function. In obesity, proinflammatory macrophages accumulate in adipose tissue and trigger chronic low-grade inflammation, that promotes the development of systemic insulin resistance, yet changes in their intracellular energy metabolism are currently unknown. We therefore set out to study metabolic signatures of adipose tissue macrophages (ATMs) in lean and obese conditions. F4/80-positive ATMs were isolated from obese vs lean mice. High-fat feeding of wild-type mice and myeloid-specific Hif1-/- mice was used to examine the role of hypoxia-inducible factor-1 (HIF-1) in ATMs part of obese adipose tissue. In vitro, bone marrow-derived macrophages were co-cultured with adipose tissue explants to examine adipose tissue-induced changes in macrophage phenotypes. Transcriptome analysis, real-time flux measurements, ELISA and several other approaches were used to determine the metabolic signatures and inflammatory status of macrophages. In addition, various metabolic routes were inhibited to determine their relevance for cytokine production. Transcriptome analysis and extracellular flux measurements of mouse ATMs revealed unique metabolic rewiring in obesity characterised by both increased glycolysis and oxidative phosphorylation. Similar metabolic activation of CD14+ cells in obese individuals was associated with diabetes outcome. These changes were not observed in peritoneal macrophages from obese vs lean mice and did not resemble metabolic rewiring in M1-primed macrophages. Instead, metabolic activation of macrophages was dose-dependently induced by a set of adipose tissue-derived factors that could not be reduced to leptin or lactate. Using metabolic inhibitors, we identified various metabolic routes, including fatty acid oxidation, glycolysis and glutaminolysis, that contributed to cytokine release by ATMs in lean adipose tissue. Glycolysis appeared to be the main contributor to the proinflammatory trait of macrophages in obese adipose tissue. HIF-1, a key regulator of glycolysis, nonetheless appeared to play no critical role in proinflammatory activation of ATMs during early stages of obesity. Our results reveal unique metabolic activation of ATMs in obesity that promotes inflammatory cytokine release. Further understanding of metabolic programming in ATMs will most likely lead to novel therapeutic targets to curtail inflammatory responses in obesity.
Unique metabolic activation of adipose tissue macrophages in obesity promotes inflammatory responses.
Sex, Specimen part
View SamplesOverexpression of a grapevine C-repeat binding factor (CBF) gene, VvCBF4 in cv. Freedom was found to improve freezing survival in non-cold-acclimated vines.
The Vitis vinifera C-repeat binding protein 4 (VvCBF4) transcriptional factor enhances freezing tolerance in wine grape.
Specimen part
View SamplesTo elucidate the effect of heat stress and the following recovery on grapevines and identify some regulated genes representing the classical heat stress response and thermotolerance mechanisms, transcript abundance of grapevine (Vitis vinifera L.) were quantified using the Affymetrix Grape Genome oligonucleotide microarray (15,700 transcripts), followed by quantitive Real-Time PCR validation for some transcript profiles. The treatment: heat stress(5h) and the following recovery (18.5h), sampling were conducted at two time respectively. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Lijun Wang. The equivalent experiment is VV40 at PLEXdb.]
Transcriptomic analysis of grape (Vitis vinifera L.) leaves during and after recovery from heat stress.
Specimen part
View SamplesBud endodormancy induction response of two genotypes (Seyval a hybrid white wine grape and V. riparia, PI588259 a native north american species) was compared under long and short photoperiod. Three separate replicates (5 plants/replicate) were treated in each of 2 separate years (2007 and 2008) to generate paradormant (LD) and same aged endodormancy-induced (SD) buds for transcriptomic, proteomic and metabolomic analysis. Potted, spur-pruned two to six-year-old vines were removed from cold storage (Seyval 3-19-07, 3/18/08; V. riparia 3/26/07, 3/24/08) and grown under a LD (15 h) at 25/20 + 3C day/night temperatures (D/N). When vines reached 12-15 nodes they were randomized into groups for differential photoperiod treatments. On 4/30/07 and 4/28/08 LD and SD (13 h) treatments were imposed with automated photoperiod system (VRE Greenhouse Systems). Temperatures were maintained at 25/20 + 3C D/N. Three replications (5 vines/replication) were harvested between 5/07-6/07 and then again in 5/08-6/08. At 1, 3, 7, 14, 21, 28 and 42 days of differential photoperiod treatment, buds were harvested from nodes 3 to 12 (from the base of the shoot) of each separate replicate, immediately frozen in liquid nitrogen, and placed at -80C for future RNA, protein and metabolite extraction. These time points encompass early reversible phases as well as key time points during transition to irreversible endodormancy development. After photoperiod treatments and bud harvests, all pruned vines were returned to LD and monitored for bud endodormancy. The endodormant vines were identified after 28 days and moved to cold storage. The nondormant vines were allowed to grow again and induced into dormancy at a later date. Acknowledgement:This study was funded by NSF Grant DBI0604755 and funds from the South Dakota Agriculture Experiment Station. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Anne Fennell. The equivalent experiment is VV18 at PLEXdb.]
Short day transcriptomic programming during induction of dormancy in grapevine.
Age, Specimen part
View SamplesA major goal in prostate stem cell biology is to identify genes, pathways, or networks that control self-renewal and multilineage differentiation. We hypothesize that 1,25 dihydroxyvitamin D3 can induce differentiation of prostatic progenitor/stem cells, thus serving as an in vitro model with which to study the molecular mechanisms of stem cell differentiation by 1,25 dihydroxyvitamin D3. 1,25 dihydroxyvitamin D3 elicits its effects primarily through transcriptional regulation of genes, so microarray studies were used to gain insight into the cellular response to 1,25 dihydroxyvitamin D3.
Interleukin-1α mediates the antiproliferative effects of 1,25-dihydroxyvitamin D3 in prostate progenitor/stem cells.
Specimen part
View SamplesGene expression analyis of two neonatal fibroblasts (BJ and HFF1), one adult dermal fibroblasts (NFH2), two BJ-derived human iPSCs (iB4 and iB5), two HFF1-derived iPSCs (iPS 2 and iPS4), four NFH2-derived iPSCs (OiPS3, OiPS6, OiPS8, OiPS16), one amniotic fluid cells and three derived iPSCs (lines 4, 5, 6, 10, and 41), two human ES cells (H1 and H9), neonatal fibroblasts transduced with the four retroviral factors (OKSM) after 24h, 48h, and 72h, neonatal fibroblasts treated with EDHB for 24h, 48h, and 72h, neonatal fibroblasts transduced with four factors and treated with EDHB for 24h, 48h, and 72h, neonatal fibroblasts knocked down for HIF1A (HIF1-KD) and for a scrambled sequence (SCR-KD)
HIF1α modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2.
Age, Specimen part, Cell line
View Samples