Regulation of carotenoid composition and shoot branching in Arabidopsis by a chromatin modifying histone methyltransferase, SDG8<br></br>Comparison of transcript profiles between wild type Columbia and ccr1 (carotenoid and chloroplast regulatory) mutant, which contains a mutation in At1g77300 (SDG8)
Regulation of carotenoid composition and shoot branching in Arabidopsis by a chromatin modifying histone methyltransferase, SDG8.
Age
View SamplesAt 35 DAP whole kernels (pericarp + endosperm + embryo) without glumes of green house grown ears of heterozygous (+/bt2-H2328), self-pollinated plants were visually divided into pools of phenotypically normal looking kernels (small indentation, slightly smaller than mutant kernels, genotype +/+ or +/bt2-H2328) and pools of phenotypically mutant kernels (plump, round kernels, slightly larger than normal kernels, genotype bt2-H2328/bt2-H2328). Pools consisted of 4 kernels. 3 different ears were used for a biological duplicate.
Transcriptional and metabolic adjustments in ADP-glucose pyrophosphorylase-deficient bt2 maize kernels.
No sample metadata fields
View SamplesMesoangioblasts are vessel-associated progenitor cells that show therapeutic promise for the treatment of muscular dystrophy. Mesoangioblasts have the ability to undergo skeletal muscle differentiation and cross the blood vessel wall regardless of the developmental stage at which they are isolated. Here we show that PW1/Peg3 is expressed at high levels in mesoangioblasts obtained from mouse, dog and human tissues and its level of expression correlates with their myogenic competence. Silencing PW1/Peg3 markedly inhibits myogenic potential of mesoangioblasts in vitro through MyoD degradation. Moreover, lack of PW1/Peg3 abrogates mesoangioblast ability to cross the vessel wall and to engraft into damaged myofibers through the modulation of the junctional adhesion molecule-A. We conclude that PW1/Peg3 function is essential for conferring proper mesoangioblast competence and that the determination of PW1/Peg3 levels in human mesoangioblasts may serve as a biomarker to identify the best donor populations for therapeutic application in muscular dystrophies.
PW1/Peg3 expression regulates key properties that determine mesoangioblast stem cell competence.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Sumoylation coordinates the repression of inflammatory and anti-viral gene-expression programs during innate sensing.
Specimen part
View SamplesBone marrow derived dendritic cells were generated from Ubc9[fl;-] and Ubc9[+/+] mice. After in vitro derivation in the presence of GM-CSF, dendritic cells were treated with tamoxifen for four days to cause CreERT2 activation, and induce Ubc9 floxed allele deletion. This allowed comparative transcriptomic analysis of Ubc9[+/+] and Ubc9[-/-] dendritic cells unstimulated or stimulated with 10ng/ml LPS for one hour and six hours.
Sumoylation coordinates the repression of inflammatory and anti-viral gene-expression programs during innate sensing.
Specimen part
View SamplesDevelopmental checkpoints in stem/progenitor cells are critical to the determination, commitment and differentiation into distinct lineages. Cancer cells often retain expression of lineage-specific checkpoint proteins, but their potential impact in cancer remains elusive. T lymphocytes mature in the thymus following a highly orchestrated developmental process that entails the successive rearrangements and expression of T-cell receptor (TCR) genes. Low affinity recognition of self-peptide/MHC complexes (self-pMHC) presented by thymic epithelial cells by the TCR of CD4+CD8+ (DP) cortical thymocytes transduces positive selection signals that ultimately shape the developing T cell repertoire. DP thymocytes not receiving these signals die by lack of stimulation whereas those that recognize self-pMHC with high affinity undergo TCR-mediated apoptosis and negative selection. In T-cell acute lymphoblastic leukaemia (T-ALL), leukaemic transformation of maturating thymocytes results from the acquisition of multiple genetic and epigenetic alterations in oncogenes and tumour suppressor genes, that disrupt the normal regulatory circuits and drive clonal expansion of differentiation-arrested lymphoblasts. We show here that TCR triggering by negatively-selecting self-pMHC prevented T-ALL development and leukaemia maintenance in mice. Induction of TCR signalling by high affinity self-pMHC or treatment with monoclonal antibodies to the CD3 signalling chain (anti-CD3) caused massive leukaemic cell death and a gene expression program resembling that of thymocyte negative selection. Importantly, anti-CD3 treatment hampered leukaemogenesis in mice transplanted with either mouse or patient-derived T-ALLs. These data provide a rationale for targeted therapy based on anti-CD3 treatment of T-ALL patients and demonstrate that endogenous developmental checkpoint proteins are amenable to therapeutic intervention in cancer cells.
Triggering the TCR Developmental Checkpoint Activates a Therapeutically Targetable Tumor Suppressive Pathway in T-cell Leukemia.
Cell line
View SamplesA widely shared view reads that 'MSCs' are ubiquitous in human connective tissues, can be defined by a common in vitro phenotype, share a skeletogenic potential as assessed by in vitro differentiation assays, and coincide with the ubiquitous 'pericytes.' Using stringent in vivo differentiation assays and transcriptome analysis, we show here that human cell populations from different anatomical sources, which would all be regarded as 'MSCs' based on these criteria and assumptions, actually differ widely in their transcriptomic signature and in vivo differentiation potential. In contrast, they share the capacity to guide the assembly of functional microvessels in vivo, regardless of their anatomical source, or in situ identity as perivascular or circulating cells. This analysis further reveals that muscle 'pericytes,' which are not spontaneously osteo-chondrogenic as previously claimed, may indeed coincide with an ectopic perivascular subset of committed myogenic cells similar to satellite cells. Cord blood-derived stromal cells, on the other hand, display the unique capacity to form cartilage in vivo spontaneously, in addition to an assayable osteogenic capacity. These data suggest the need to revise current misconceptions on the origin and function of so-called 'MSCs,' with important applicative implications. The data also support the view that rather than a uniform class of 'MSCs,' different mesoderm derivatives include distinct classes of tissue-specific committed progenitors, likely of different developmental origin.
No Identical "Mesenchymal Stem Cells" at Different Times and Sites: Human Committed Progenitors of Distinct Origin and Differentiation Potential Are Incorporated as Adventitial Cells in Microvessels.
Specimen part
View SamplesVascular pericytes, an important cellular component, in the tumor microenvironment, are often associated with tumor vasculatures and their functions in cancer invasion and metastasis are poorly understood. Here we show that PDGF-BB induces pericyte fibroblast transition (designated as PFT), which significantly contributes to tumor invasion and metastasis. Gain- and loss-of-function experiments demonstrate that the PDGF-BB-PDGFR signaling promotes PFT in vitro and in in vivo tumors. Genome-wide expression analysis indicates that PDGF-BB-activated pericytes acquire mesenchymal progenitor features. Pharmacological inhibition and genetic deletion of PDGFR ablate the PDGF-BB-induced PFT. Genetic tracing of pericytes with two independent mouse strains, i.e., TN-AP-CreERT2:R26R-tdTomato and NG2:R26R-tdTomato, shows that PFT cells gains stromal fibroblast and myofibroblast markers in tumors. Importantly, co-implantation of PFT cells with less-invasive tumor cells in mice markedly promotes tumor dissemination and invasion, leading to an increased number of circulating tumor cells (CTCs) and metastasis. Our findings reveal a novel mechanism of vascular pericytes in PDGF-BB-promoted cancer invasion and metastasis by inducing PFT and thus targeting PFT may offer a new treatment option of cancer metastasis.
Pericyte-fibroblast transition promotes tumor growth and metastasis.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Solute Carrier NTCP Regulates Innate Antiviral Immune Responses Targeting Hepatitis C Virus Infection of Hepatocytes.
Specimen part, Cell line, Treatment
View SamplesChronic hepatitis B, C and D virus (HBV, HCV, HDV) infections are leading causes of liver disease and cancer worldwide. Although these viruses differ markedly in their life cycle and genomic organization, they exclusively infect hepatocytes. Recently, the sodium taurocholate cotransporting polypeptide (NTCP) was identified as the first functional receptor for HBV and HDV. Here, we report that NTCP also facilitates HCV entry into human hepatocytes, by augmenting the bile acids-mediated repression of IFN-stimulated genes (ISGs), including IFITM2 and IFITM3, to increase the susceptibility of cells to HCV entry. Furthermore, an HBV-derived preS1 peptide, known to bind NTCP and to inhibit bile acids uptake and HBV infection, inhibits HCV entry by enhancing the expression of ISGs. Our study highlights NTCP as a novel player linking bile acids metabolism to the interferon response in hepatocytes and establishes a role for NTCP in the entry process of multiple hepatotropic viruses, via distinct mechanisms. Collectively, these findings enhance our understanding of hepatitis virus-host interactions and suggest NTCP as an attractive antiviral target for HBV/HCV co-infection.
Solute Carrier NTCP Regulates Innate Antiviral Immune Responses Targeting Hepatitis C Virus Infection of Hepatocytes.
Treatment
View Samples